
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
OFFICE OF SCIENCE AND TECHNOLOGY

METEOROLOGICAL DEVELOPMENT LABORATORY

AWIPS
APPLICATION INTEGRATION

FRAMEWORK MANUAL

 — Build 5.1.1

JUNE 2001

June 2001

i

Application Integration Framework Manual
Release 5.1.1

Table of Contents

June 2001

ii

SECTION TITLE PAGE

List of Tables vi

June 2001

iii

List of Exhibits viii

June 2001

iv

Introduction and Overview ix

1.0 AWIPS Architecture 1-1
1.1 System Hardware Architecture 1-1
1.2 Major System Software Components 1-1
1.3 Input and Output Devices 1-2

2.0 Local Applications Development (non-D2D) 2-1
2.1 Common Desktop Environment (CDE) 2-1
2.2 Software Tools 2-2
2.3 Setting up a Local Development environment 2-4
2.3.1 Local Development Host 2-5
2.3.1.1 Locally Attached non-AWIPS Platforms 2-6
2.3.1.2 Data Server 2-6
2.3.1.3 Applications Server 2-6
2.3.1.4 Workstation 2-6
2.3.1.5 LAN and CPU Considerations 2-7
2.3.2 Local Development User Accounts 2-8
2.3.3 Local Development User Resources 2-8
2.3.4 Local Development Directory Structure 2-8
2.3.5 CPU Allocation Control 2-10
2.3.6 Controlling Permissions 2-11
2.3.7 Operating System 2-11
2.3.8 Network Information Services (NIS) 2-11
2.3.9 Informix dbspaces 2-11
2.3.10 Wide-Area Network 2-11
2.3.11 Disk 2-12
2.3.11.1 Disk Allocations 2-12
2.3.11.2 System File Information 2-12

3.0 Coding and Documentation Guidelines 3-1
3.1 Software naming conventions 3-1
3.1.1 Name Lengths 3-1
3.1.2 Public API Function and Subroutine Names 3-2
3.1.3 Number/Naming of Subdirectories 3-2
3.1.4 Symbol Names and Restrictions 3-3
3.1.5 Accommodating Backup/Failover: Floating names and

addresses
3-4

3.2 High Level Languages 3-5
3.2.1 Allowable C and FORTRAN extensions and features 3-5
3.2.2 Inter-Language Communication 3-8
3.2.3 Source Code Compilation 3-9
3.2.3.1 To compile C code under the gnu C++ compiler 3-9
3.2.3.2 Compiler Flags 3-9
3.2.4 X-Windows System Libraries 3-10
3.3 Scripting Languages 3-10
3.3.1 Tcl/Tk 3-11
3.3.2 Shell Scripts 3-11
3.4 Environment Variables 3-12
3.5 Shared and Archive Libraries 3-13
3.5.1 Description 3-13
3.5.2 Recommendations for Use 3-14
3.6 Error Logging and User Notification 3-15
3.7 Internal Documentation 3-17
3.7.1 Prologues and Source Control 3-17

June 2001

v

3.7.2 Header Files and Locations 3-18
3.7.3 Standard Header Files 3-18
3.8 External Documentation 3-18
3.9 Input, Output, Display, and Printing 3-20

4.0 Data Management and Access 4-1
4.1 Data Storage/Access Packages 4-1
4.1.1 Flat files 4-3
4.1.1.1 NetCDF 4-3
4.1.1.2 Plotfiles 4-6
4.1.1.2.1 DataKeys, DataAccessKeys 4-6
4.1.1.3 WSR-88D Radar Products 4-6
4.1.1.4 Local Data Files 4-6
4.1.2 Informix 4-7
4.1.2.1 The dbaccess utility 4-7
4.1.2.2 Informix ESQL/C 4-8
4.1.2.3 Informix Databases 4-8
4.1.2.3.1 Text Product Database 4-8
4.1.2.3.2 ADAP²T (Digital Forecast) Database 4-8
4.1.2.3.3 Hydrological Database 4-8
4.1.2.3.4 Verification and Climate (hmdb) Database 4-9
4.1.3 Data on a Remote AWIPS 4-9
4.1.4 External Data 4-9
4.1.5 Where and How to Access Data Sets 4-9
4.1.6 Data Inventory Methods 4-11
4.1.7 Time and Date Conventions 4-11
4.1.8 Data Access Controls 4-12
4.1.8.1 Informix Concurrency Controls: Database Locks 4-12
4.1.9 Purging 4-12
4.2 Data Classes 4-13
4.2.1 Aircraft observations 4-13
4.2.2 Grids 4-14
4.2.2.1 Naming conventions for grid directories and files 4-14
4.2.2.2 Organization of netCDF grid files 4-15
4.2.2.2.1 Global attributes 4-15
4.2.2.2.2 Dimensions and coordinate variables 4-16
4.2.2.2.3 Variables, with their dimensions and attributes 4-18
4.2.2.2.3.1 Grid variables with their companion attribute variables 4-18
4.2.2.2.3.2 Variables representing overall file characteristics 4-21
4.2.2.3 Other supporting files 4-22
4.2.2.4 Existing software (APIs) for reading netCDF grid files 4-23
4.2.2.5 Existing software (APIs) for writing netCDF grid files 4-33
4.2.3 Point Data 4-34
4.2.3.1 METAR Data 4-34
4.2.3.1.1 File naming conventions 4-34
4.2.3.1.2 Organization of files 4-34
4.2.3.1.3 Supporting files 4-37
4.2.3.2 RAOB Data 4-37
4.2.3.2.1 File naming conventions 4-37
4.2.3.2.2 Organization of files 4-38
4.2.3.2.3 Supporting files 4-40
4.2.3.3 Lightning Data 4-40
4.2.3.3.1 File naming conventions 4-40
4.2.3.3.2 Organization of files 4-40
4.2.3.3.3 Supporting files 4-41

June 2001

vi

4.2.3.4 Wind Profiler Data 4-41
4.2.3.4.1 File naming conventions 4-41
4.2.3.4.2 Organization of files 4-41
4.2.3.4.3 Supporting files 4-42
4.2.3.5 Marine Report Data 4-43
4.2.3.5.1 File naming conventions 4-43
4.2.3.5.2 Organization of files 4-43
4.2.3.5.3 Supporting files 4-45
4.2.3.6 LDAD (Local Data Acquisition and Dissemination) 4-46
4.2.3.6.1 File naming conventions 4-46
4.2.3.6.2 Organization of files 4-46
4.2.3.6.3 Supporting files 4-55
4.2.3.7 Model Soundings 4-55
4.2.3.7.1 File naming conventions 4-55
4.2.3.7.2 Organization of files 4-55
4.2.3.7.3 Supporting files 4-55
4.2.3.8 Reading and writing to point data files 4-55
4.2.4 RADAR Products 4-57
4.2.4.1 Naming conventions for image directories and files 4-57
4.2.4.2 Radar Text Products 4-62
4.2.4.3 Radar product data format 4-63
4.2.4.4 AWIPS APIs for radar product processing 4-63
4.2.4.4.1 Radar Data Access 4-64
4.2.4.4.2 Radar Data Processing APIs 4-64
4.2.5 Satellite imagery 4-66
4.2.5.1 Naming conventions for image directories and files 4-66
4.2.5.2 Organization of netCDF image files 4-68
4.2.5.2.1 Global attributes 4-69
4.2.5.2.2 Dimensions and coordinate variables 4-69
4.2.5.2.3 Variables, with their dimensions and attributes 4-70
4.2.5.3 Other supporting files 4-70
4.2.5.4 Software APIs for netCDF image file I/O 4-70
4.2.6 Satellite soundings 4-74
4.2.7 Text Database 4-76
4.2.7.1 Text Product Identifiers 4-77
4.2.7.2 Supporting files 4-77
4.2.7.3 Text Database I/O APIs 4-77
4.2.8 Digital Forecast Data 4-80
4.2.8.1 Grids 4-80
4.2.8.2 Zone DFM 4-80
4.2.8.3 Station DFM 4-80
4.2.8.4 IFP Database Access, APIs 4-80
4.2.9 Verification Data 4-80
4.2.9.1 Public Format, Content 4-80
4.2.9.2 Aviation Format, Content 4-80
4.2.9.3 Marine Format, Content 4-80
4.2.9.4 Hazardous Weather Format, Content 4-81
4.2.9.5 Fire Weather Format, Content 4-81
4.2.9.6 Hydrologic Format, Content 4-81
4.2.9.7 Verification Database Access, APIs 4-81
4.2.10 NCEP (REDBOOK) Graphics 4-81
4.3 Site-Specific Data Sets 4-81
4.3.1 Site-Specific Static Data 4-81
4.3.2 Site Customization and Preference Data 4-82
4.3.3 Site Specific Data Formats and Locations 4-82

June 2001

vii

4.3.4 Site-Specific Data Creation and Management (for System
Manager's Manual instead?

4-82

5.0 Initiation of Local Applications 5-1
5.1 From a D2D Menu 5-1
5.2 From the CDE Pop-Up Menu 5-2
5.3 From CDE Icons 5-2
5.4 From the Command Line 5-2
5.5 From the crontab 5-2
5.6 HP MC/Service Guard 5-4

6.0 Product Dissemination 6-1
6.1 Dissemination Mechanisms 6-1
6.1.1 WAN 6-1
6.1.1.1 The handleOUP interface 6-2
6.1.1.2 The distributeProduct interface 6-3
6.1.2 LDAD 6-3
6.1.3 Asynchronous Product Scheduler (APS) 6-3
6.2 Product Archive 6-4

7.0 On-Line Resources and URLs 7-1

8.0 References 8-1

9.0 Acronyms 9-1

APPENDICES

Appendix 1 NetCDF API examples for reading point data files A1-1

Appendix 2 Sample output from “testGridKeyServer” to list valid
values for AWIPS grid APIs

A2-1

Appendix 3 Summary of applicable data subdirectories by WSR-88D
product type

A3-1

Appendix 4 External Documentation Standards for Locally-Developed
AWIPS Applications

A4-1

Appendix 5 man pages for handleOUP.pl and distributeProduct CLIs A5-1

Appendix 6 Tools to Monitor Application Performance and Resources A6-1

Appendix 7 Suggested Format for Maintenance Documentation A7-1

ATTACHMENTS

Attachment 1 MDL FORTRAN Coding Guidelines ATT1-1

Attachment 2 MDL C Software Implementation Conventions 52 pp.

Attachment 3 FX-ALPHA C and C++ Coding Conventions 10 pp.

June 2001

viii

. .

. .

. .

. .

. .

June 2001

ix

List of Tables

TABLE DESCRIPTION PAGE

1.3-1 Input and output device availability and
locations on AWIPS.

1-3

2.2-1 Installed locations and licensing terms for
Commercial, Off-the-Shelf (COTS) software
provided with the Build 4.2 version of AWIPS at
the WFO and RFC.

2-3

2.3.1.5-1 Possible Server Combinations 2-7

2.3.1.5-2 Performance Factors for AS and DS 2-7

2.3.11.2-1 File System Guidelines 2-12

3.2.3.2-1 Server and Workstation Models 3-10

3.9-1 Input and output device configurations on AWIPS. 3-20

4.1-1 Storage formats and methods for the current
classes of AWIPS online hydrometeorological
data.

4-1

4.1.1.1-1 Correspondence between netCDF and programming
language variable types.

4-5

4.2.3.1.2-1 METAR data stored in a binary plotfile. 4-35

4.2.3.1.2-2 METAR data stored in a netCDF file. 4-36

4.2.3.2.2-1 RAOB data stored in netCDF files and binary
plotfiles.

4-38

4.2.3.3.2-1 Lightning data stored in netCDF and binary
plotfiles.

4-41

4.2.3.4.2-1 Wind profiler data stored in netCDF and binary
plotfiles.

4-41

4.2.3.5.2-1 Marine report data stored in netCDF files. 4-43

4.2.3.6.2-1 Hydrological data stored in LDAD hydro netCDF
files.

4-47

4.2.3.6.2-2 Automated mesonet data stored in LDAD mesonet
netCDF files.

4-48

4.2.3.6.2-3 Cooperative and dial-in data stored in LDAD
manual netCDF files.

4-51

4.2.4.1-1 Subdirectory name definitions for the radar

June 2001

x

product data attribute productType.
4-58

4.2.4.1-
2

Subdirectory
name
definitions
for the radar
product data
attribute
elevation.

4-60 4.2.4.1-
3

Subdirectory
name
definitions
for the radar
product data
attribute
resolution.

4-62

4.2.4.1-4 Subdirectory name definitions for the radar
product data attribute levels.

4-62

A6-1 UNIX Tools A6-10

June 2001

xi

List of Exhibits

EXHIBIT DESCRIPTION PAGE

5.5-1 Arrival Pattern for Grids 5-3

5.5-2 Arrival Pattern for METAR Products 5-4

A2-1 Sample output lines of “testGridKeyServer -v” to
list valid values for fieldID.

A2-1

A2-2 Sample output lines of “testGridKeyServer -p” to
list valid values for planeID.

A2-1

A2-3 Sample output lines of “testGridKeyServer -s” to
list valid values for sourceID and grid_source.

A2-1

A4-1 Contents and format for PART A: PROGRAM
INFORMATION.

A4-17

A4-2 Contents and format for PART B: PROGRAM FILE
AND DATABASE INFORMATION.

A4-19

A4-3 Contents and format for PART C: PROGRAM
CREATION AND INSTALLATION PROCEDURE.

A4-20

A4-4 Contents and format for PART D: PROGRAM
EXECUTION AND ERROR CONDITIONS.

A4-21

A4-5 Contents and format for PART A: SUBPROGRAM
INFORMATION.

A4-22

A4-6 Contents and format for PART B: SUBPROGRAM FILE
AND DATABASE INFORMATION.

A4-24

A4-7 Contents and format for PART C: SUBPROGRAM
CREATION AND INSTALLATION PROCEDURE.

A4-25

A4-8 Contents and format for PART D: MANUAL PAGE FOR
PROGRAMMERS.

A4-26

June 2001

xii

INTRODUCTION

This AWIPS Application Integration Framework Manual (AIFM) is intended to
assist both field and headquarters personnel in using the AWIPS environment to
develop and implement hydrometeorological applications. An AWIPS Local
Applications Working Group with National, Regional, and field representation
has been established to define the policy and mechanisms under which local
development and distribution of AWIPS applications may proceed. The AIFM
provides the technical guidance to the local software developer, and will be
updated as often as warranted.

A very brief overview of the AWIPS architecture is given in AIFM Chapter 1 in
case it is not easily accessible elsewhere. Chapter 2 and Appendix 6 describe
the AWIPS environment, development resources, software tools, and guidelines
on how to minimize the impact of local applications development on the
operational AWIPS. Coding languages, guidelines and standards are presented
in Chapter 3, and in Attachments 1, 2, and 3. Documentation standards and
guidelines are presented in Chapter 3 and Appendix 4. Chapter 4 describes the
locations, content, and methods of access to the various national hydro-
meteorological data received and stored on AWIPS. The methods by which local
applications may be launched is documented in Chapter 5, and the available
mechanisms for disseminating official and draft products from AWIPS are
presented in Chapter 6 and Appendix 5.

AWIPS is a complex environment in which to develop, integrate, and run
applications software. However, procedures and Application Programming
Interfaces (APIs), with the associated underlying software, are being
incrementally defined to assist development. In one respect, applications
that are designed to provide a display to a user can be thought of in two
categories--those that utilize the AWIPS two-dimensional display (D2D) and
those that don't. Three provisions for using D2D currently exist--Extensions,
Applications, and Depictables. Extensions and Depictables are quite complex
to use, and uninformed use could easily impact the operation of AWIPS.
Alteratively to using D2D, displays can be created using standard X-Window
calls, Tcl/Tk, or blt extensions to Tcl/Tk. Therefore, until safe paths for
the use of D2D can be established, no attempt should be made to integrate into
D2D. When these safe paths and system resources to utilize them become
available, a separate chapter of the AIFM will describe them.

This AIFM was written and edited primarily by SAIC/General Sciences Corpora-
tion, under contract to the AWIPS Program, working with the Meteorological
Development Laboratory, other Governmental organizations, and Litton/PRC,
Incorporated (PRC). Some material was taken from an AIFM prepared by PRC
under Government contract for the Builds 1.0 and 2.0 architecture. Additional
new material incorporating experience gained with the current AWIPS architec-
ture and software was provided by PRC under a task order in the Build 4.2 time
frame and included in this revision.

The AIFM is a work in progress. It will be updated in some evolving and
complex subject areas, and has not yet had extensive review or use in the
field. It is being provided in order to assist and guide development of good-
quality, well-documented local applications. Constructive criticism from
software developers in the field is encouraged to allow this AIFM to be
improved.

June 2001

-1

1.0 AWIPS Architecture

AWIPS is implemented as a client-server system. The application of client-
server methods to AWIPS facilitates the reuse of functions and provides an
expandable and scalable architecture to meet the evolving needs of long life-
cycle systems.

A client-server mechanism enables multiple applications to share the services
of various functions and allows functions to be reused. For example, database
services and display services are shared. Through distribution of services,
the system is expandable and scalable. This is accomplished by the ability to
move services from one platform to another, and the ability to increase,
incrementally if necessary, the computing capability needed by any one
service. Both activities may be accomplished without affecting other services
or changing mission applications.

In an integrated system such as AWIPS, the multiple functional implementations
need to be managed independently of one another as much as is practical. For
example, a change to the data management function should not cause a change to
the display and interaction function or a change to hydromet processing. By
separating the functionality, a degree of independence and isolation can be
achieved. Consider an application that consists of data, processing, and user
interaction. It can be implemented as one monolithic application, or it can
be implemented as a set of clients that call upon services common to user
interaction and multiple applications, such as data retrieval and storage. A
client/server implementation permits services that are common to multiple
applications to be made available to these applications, without the need to
develop the service for each of the applications. Such an implementation
results in reuse of services.

A client/server implementation also provides separation of client processing
from server processing such that a client can execute on a computer physically
different from the one on which the service executes. This is particularly
important for AWIPS, since it is implemented with functionality executing on
different computers. For example, workstations provide the user interface
with which the forecaster interacts, data servers provide data management
services to multiple applications, and application servers process hydromet
data and run background applications. Client/server also helps achieve high
availability of functions in the event a server fails by being able to switch
to another server, for example, from a data service executing on one computer
to the data service running on another computer. By constructing applications
that separate functions, a switch to a backup server, due to the failure of
the primary server, is transparent to the application.

1.1 System Hardware Architecture

The current AWIPS system architecture is now documented in detail in Chapter 2
of the AWIPS System Manager’s Manual for Release 4.3 (SMM), and will no longer
be included in the AIFM.

1.2 Major System Software Components

This section will only deal with the software components of the AWIPS hydro-
meteorological subsystem, since it is these that are of direct importance to
the local applications developer. Formal documentation of the complete system

June 2001

-2

software components is outside the scope of this document. For a complete
description of the system software components within AWIPS refer to the
System/Subsystem Design Description for Release 4.3.

Four major software components comprise the hydrometeorological subsystem of
AWIPS: Display Two Dimensions (D2D), AWIPS Data Analysis and Product Prepara-
tion Tools (ADAP²T), the NWS River Forecast System (NWSRFS) at RFCs or the WFO
Hydrologic Forecast System (WHFS) at WFOs, and the Local Data Acquisition and
Dissemination (LDAD) subsystem. D2D provides a system for acquisition,
processing, and display of the majority of the conventional and remotely-
sensed observations and image data, forecast model grids and graphics, and
AFOS text products. The D2D database is the source of these data sets, and
consists of a combination of primarily flat file storage, with text product
storage in the Informix RDBMS. The bulk of Section 4 of this document
describes the storage formats and data access for the data sets in the D2D
database.

ADAP²T provides tools for the initialization, entry, display, and editing of
gridded, areal, and point forecast data. ADAP²T acquires, processes, and
stores centrally- and locally-created objective and manual forecast guidance
including Model Output Statistics (MOS), Local AWIPS MOS Program (LAMP)
guidance, and NCEP Value-Added Grids (VAG). The Interactive Forecast Prepara-
tion (IFP) capability of ADAP²T [Limited-Use Interactive Computer Worded
Forecast (ICWF) in Build 4.3] also creates local forecast data sets in the
form of a Digital Forecast Matrix (DFM) which is stored and maintained in the
Informix RDBMS, and generates textual and other official forecast products for
editing and dissemination.

NWSRFS and WHFS are a suite of applications for hydrological data analysis,
data display, and forecasting, and for maintenance of the supporting hydrolog-
ical databases. The bulk of the hydrological data sets are stored and
maintained in the Informix RDBMS. Documentation for the hydrological data
sets, programming interfaces, and applications are available separately from
RFCs and the Office of Hydrology, and are not included in this document.

The LDAD subsystem supports acquisition of hydrometeorological data from local
systems external to AWIPS, and dissemination of AWIPS products to external
systems by a number of mechanisms. Current (Build 4.3) LDAD dissemination
mechanisms are restricted to the LDAD Bulletin Board Service. Future dissemi-
nation mechanisms planned for LDAD include fax, ftp, and web-based dissemina-
tion. Section 4 of this document describes the storage formats and data
access for the data sets in the AWIPS side of the LDAD database. Section 6
will include a description of LDAD dissemination mechanisms, and references to
current LDAD documentation.

1.3 Input and Output Devices

AWIPS input and output devices vary by machine and by site type (WFO or RFC).
Some are shared over the network, and others are available only to a specific
host machine. Table 1.3-1 lists the primary I/O devices of interest to
application developers.

June 2001

-3

Table 1.3-1. Input and output device availability and locations on AWIPS.

I/O DEVICE HOST PLATFORM(S)

WS (x5) Color X-
Term (x5)

AS (x2) DS (x2) LAN
Resource

Color
Graphics
Monitor

Two each One each

System
Console

One shared between
AS's and DS's

Keyboard One each One each One shared between
AS's and DS's

Mouse One each One each

CD-ROM One external
drive shared
between all
WS's

One each One each

DAT
Autoloader
Tape Backup

One shared
between
DS's

B&W Laser
Printer
(Postscript)

One

High Speed
Laser Printer
(Postscript)

One at
RFCs

Color Inkjet
Printer
(Postscript)

One

Internal Disk
Storage

3 GB each 4 GB each 6 GB each
(Note 1)

External Mass
Storage

24 GB WFO
40 GB RFC

Note 1: On the DS, a 300 MB partition will be set up for local applications
development, and a 460 MB (WFO) or 2240 MB (RFC) partition will be set up as
user space. Release 4.3 introduces a 990 MB partition set up for local
application data (see Section 2.3.3).

June 2001

-1

2.0 Local Applications Development (non-D2D)

This section describes the software tools and the software development
environment at AWIPS WFO and RFC sites. It gives guidelines for setting up a
local software development environment which protects the baseline AWIPS data
and software configurations.

2.1 Common Desktop Environment (CDE)

At its most basic level, the Common Desktop Environment provides a graphical,
window-based interface to many of the common UNIX functions without the need
to learn UNIX commands and syntax. CDE provides a File Manager from which the
user can perform functions such as copy, delete, edit, execute files; navigate
through directories; create and delete directories, and find files by name or
by specific file contents. CDE has its own text editor with print option
capability, or can be reconfigured to substitute the text editor of your
choice. CDE has a terminal window for the UNIX-capable; a print manager for
printer setup and print job management; an e-mail application; a Help Manager
for online help; a calculator, man page viewer, appointment calendar, and icon
editor; and many other tools and utilities.

CDE has implemented a concept of workspaces, which is another level up from
the concept of having multiple windows on the screen. Windowing gives you the
capability of having several windows open on the screen at the same time, with
the ability to switch between the single active window and the inactive
windows. Workspaces, in essence, give you the capability of having several
screens within one monitor, each able to containing its own set of multiple
windows, with an ability to instantly switch between screens. The primary
difference between windows and workspaces is that only one workspace is
viewable on a monitor at any time--they can't be tiled or overlaid, i.e., they
aren't windows-within-windows.

In a practical sense, workspaces allow you to keep your screen from getting
too cluttered when you need to have several windows open and need to switch
between them, or can allow you to organize related windows into groups
contained within their own separate workspaces. Multiple workspaces don't
give you more computing power, more memory, or multiple host machines--you
only get a convenient way of having many windows open simultaneously on the
same monitor with less screen clutter.

Another powerful feature of CDE is the Create Actions capability. Create
Actions allows you to associate an icon with a UNIX command or script, and to
have the command run in a newly-created terminal window, or have an applica-
tion initiated by the command in the action run in a window of its own
creation. The command line you enter in the Create Actions menu allows you to
enter placeholders for input files to be acted on by the command. The power
of the placeholder is that it allows you to select a file icon from the file
manager window with the mouse, drag it on top of the Action's icon, and the
command in the action will be executed on the file.

As an example, let's say you've found a non-copyrighted, freeware application
to display a WSR-88D Echo Tops product in pseudo-3-dimensional form in an X
window, but don't have the time learn how to write a GUI to inventory and
select the products from the AWIPS database and fire up the application. You
could set up an action to run the application from the command line with the

June 2001

-2

placeholder for the Echo Tops product file as an argument. To bring up the
display, you would simply open a File Manager window and change to the AWIPS
data subdirectory that holds the Echo Tops product data files (conveniently
named by date and time), select and drag the file icon for the desired time
over on top of the application's Action icon, and bingo, the application runs
and up comes a window with the 3-D display of the selected Echo Tops product.

In its initial configuration, CDE will be set up on the WFO/RFC workstations
in a minimal configuration with named workspaces for D2D (display and analysis
package) and other packages. Other than workspace switching, few or none of
the CDE tools or applications will be available while the workstation is
logged in to the operational account. To gain access to the full CDE capabil-
ities at the workstation, it will be necessary to log out of the operational
account on the workstation, and log back in to the user or developer accounts.
The System Manager will have to configure CDE for these accounts to make
available whatever tools are needed by users or software developers.

Depending on local needs, CDE workspaces and applications may be configured
differently at different sites by the System Manager. Also, the locations of
applications within workspaces is a matter of convenience and standardization
more than an system-enforced limitation. At any time, any active window can
be copied or moved to another workspace, which gives the user a great deal of
flexibility in their work preferences.

This section is just an overview of CDE, covering major items of interest.
Detailed information can be found on your workstation in the online help
documents included with the CDE installation, which can be accessed from (what
else!) the CDE Help Manager facility.

2.2 Software Tools

Each WFO and RFC site is provided with a basic set of Commercial, Off-The-
Shelf (COTS) software to support system management and maintenance, and local
application development. The installed COTS packages include the following:

 ! HP-UX Operating System, includes:
- Common Desktop Environment (CDE) and associated tools
- vi text editor
- Source Code Control System (SCCS)
- make utility
- xdb and adb debuggers
- m4 macro preprocessor, for all languages
- others, see Table 2-3 of Programming on HP-UX

 ! HP-UX ANSI C Compiler
 ! HP-UX FORTRAN Compiler
 ! HP DDE Debugger (C/FORTRAN)
 ! X-Window System
 ! OSF Motif
 ! Visual Numerics FORTRAN Numerical Libraries (Statistics package)
 ! Informix RDBMS: On-Line Dynamic Server, SQL, ESQL/C
 ! OmniBack Backup Software
 ! MC/Service Guard (see Section 5.6)
 ! HP Process Resource Manager (see Section 2.3.5)

June 2001

-3

In addition to the commercial software installed on AWIPS, additional Off-the
Shelf freeware packages that can be used in local software development have
been included with the system. The terms for use of these freeware packages
are generally contained in a README or other internal documentation file
included with the package. These packages include:

 ! netCDF 3.4 (network Common Data Form; array-oriented data file system)
 ! Tcl/Tk 8.0p2 (Tool Command Language and Tool Kit; scripting and GUI

tools)
 ! Perl 5.003_1 (scripting and text processing)
 ! netCDF Perl 3.4
 ! LDM (UCAR's Local Data Manager) (currently National Centers only)
 ! a2ps (ASCII-to-PostScript converter, and 'pretty-printer')
 ! BCS (Baseline Control System: code revision system using 'RCS')
 ! RCS (GNU RCS, Revision Control System for configuration items/objects)
 ! make (GNU make, build utility)
 ! ispell (GNU ispell: spell checker utility)
 ! blt 2.3 (extensions to Tcl/Tk)

A complete list can be found at the AWIPS Software Engineering web page at
http://isl715.nws.noaa.gov/awips/sw/cotsfree.html.

COTS Software Locations and Licensing

A summary of the initial installed locations of the COTS packages and the
license terms for their use is shown in Table 2.2-1. All COTS software has
been placed in subdirectories under the /opt directory, and freeware used in
the AWIPS baseline is under /usr/local/freeware. Non-baseline public domain
or COTS software shall be installed in a site-controlled directory (i.e.,
/home/localapps) with symbolic links from /usr/local (if necessary). Commer-
cial or freeware products SHALL NOT be installed directly into /usr/local or
/opt since these directories are managed via the national baseline. License
terms may vary from site to site. See your local System Manager if there are
questions about the COTS locations and license terms.

Table 2.2-1. Installation locations and licensing terms for Commercial, Off-
the-Shelf (COTS) software provided with the Build 4.3 version of AWIPS at
the WFO and RFC.

COTS Package Installed
Location

NFS
Mounting

Licensing Terms
1) Runtime or Development
2) # platform(s), or site
3) NFS mountable?
4) # simultaneous users

HP-UX OS B.10.20, CDE,
vi

All hosts n/a Dev; 1 per host; NFS; 2
Users (WS), 8 Users
(DS/AS)

ANSI C Compiler DS Yes Dev; DS1 and DS2; NFS; 1
User

FORTRAN Compiler DS Yes Dev; Site; NFS; 1 User

June 2001

COTS Package Installed
Location

NFS
Mounting

Licensing Terms
1) Runtime or Development
2) # platform(s), or site
3) NFS mountable?
4) # simultaneous users

-4

Java development kit
1.12

LS No Dev; LS; no NFS; 1 User

DDE Debugger DS Yes Dev; DS1 and DS2; NFS; 1
User

X-Window System x11R6 All HP-UX
platforms

n/a Dev; Site; no NFS; Users
n/a

OSF Motif 1.2 All HP-UX
platforms

n/a Dev; Site; no NFS; Users
n/a

Visual Numerics (IMSL)
FORTRAN Numerical
Libraries 3.0

DS Yes Dev; DS1 and DS2; NFS; No
User Limits

Informix On Line 7.3 DS Yes Dev; DS1 and DS2; NFS; 32
concurrent database
connections

Informix SQL 7.2 DS Yes Dev; DS1 and DS2; NFS;
Development Phase Sites
Only, 32 concurrent
database connections

Informix ESQL/C 7.24 DS Dev; DS1 and DS2; NFS; 16
Users

Netscape Fast Track
Server (includes 4.0.7
Browser)

AS, LS No Runtime; AS1, AS2, LS; no
NFS; 1 User

HP OmniBack II DS No Runtime; Server-DS1 and
DS2, Agent-All HP-UX
platforms; no NFS; n/a

MC/Service Guard DS; AS No Runtime; n/a; n/a; n/a

Process Resource Mgr. DS/AS No Runtime; DS1, DS2, AS1,
AS2; No NFS; Users n/a

As part of AWIPS site installation, a full suite of documentation is provided
to the WFO/RFC for each licensed COTS package within the AWIPS delivery.

2.3 Setting up a Local Development Environment

This section contains guidelines for the site's developers and AWIPS System
Manager to set up an environment for local application development. These
guidelines necessarily lean towards the conservative to help insure that local
applications development has no adverse impact on operations. The freedom and
access that is allowed to local application developers should depend on the
level of proficiency of the individuals involved, and this can only be judged

June 2001

-5

on a case-by-case basis. The guidelines in this version of the AIFM are based
on the assumption of development of stand-alone or minimally-integrated
applications. Significantly greater resources and privileges would be
required for development of D2D-integrated software, particularly those of the
extension and depictable types, and for development of IFP and WHFS
modifications and additions, or applications with external system interfaces.

General guidelines or “Rules to Live By” when making system changes:

• Always save backup copies of files being changed (i.e., *.mmddyy, *.orig
or *.old);

• If a change is applicable to multiple platforms, change only one platform
type at a time and evaluate the changes impact on the overall system.
This is especially true when making system changes to DS/AS servers. If
possible, do not change the Backup Server until the change is proven to
accomplish its goal (also consider operating in failover mode). By doing
this, a "pure" recovery (if needed) may be accomplished via a system disk
image;

• Document what/when/why the change was made.

2.3.1 Local Development Host

Local software development should be hosted on a single workstation designated
by site management as being available for development during times when it is
not fully engaged in operations. The reasoning behind the selection of the WS
is that it is at the extreme end of the processing stream, unlike the AS or DS
which must serve multiple clients on a nearly-continuous basis. Also, it has
the dedicated color monitors with full graphics capability, which is essential
for running software development tools and developing display applications.
Since neither the AS nor the DS have a monitor suitable for running software
development tools or graphical applications, then independent of which host
machine is used for local development, the developer must occupy a WS position
to log into the development host. Compilation, testing, and debugging on a WS
should not affect the performance of the other workstations, nor should it
significantly impact their access to data and resources on the DS.

In an RFC, development of local applications and their operational execution
may be performed on any workstation. The reasoning behind this is that many
staff members are involved simultaneously in development tasks, operating
independently from workstations in many areas of the office. Development
activity is dependent on office goals, available staff, and current
hydrometeorological situations. Adequate, flexible access to an appropriate
number of workstations as defined by the local office is essential for an RFC
to effectively and efficiently perform it's overall mission. When
operationally installed, execution of local applications must occur on the
workstation or server best suited to the overall performance and efficiency of
the system. Some local applications must be executed via the CRONTAB for
instance. It is the local office manager's responsibility to insure local
applications activity does not adversely affect the performance of other
workstations or the servers.

The directories that contain the compilers, tools, user space, and development
space are physically located on the DS disks, but are NFS mounted and
transparently available to the WS(s) on which development is expected to be
performed. A disadvantage of using remote NFS mounting is that it slightly

June 2001

-6

increases the local area network traffic during development-related file
access (e.g. compilation, testing, debugging), however, this is likely not to
be significant.

The best place to run a locally developed application should be based on a
number of factors:

1) Mass storage requirements
2) Schedule
3) Memory requirements
4) Database requirements
5) Degraded mode requirements

6) LAN and NFS traffic

2.3.1.1 Locally attached non-AWIPS platforms

There is an NWS policy which allows connecting additional hardware (e.g., a
PC) to your local AWIPS LAN. If this has been done, then an obvious place to
execute locally developed applications is on these platforms. Consideration
should be given to how to exchange data between these platforms and other
AWIPS platforms if that is a requirement. The use of “rcp” has been proven to
cause a lot of processes to be initiated on the remote platform if a user with
a long and complicated .rlogin or .chsrc is used. It may be better to FTP or
remote mount an NFS partition. Either of these methods, if used, shall be
tested for their impact on any operational platform. Caution should be
exercised in remote mounting partitions. NEVER mount a partition from a non-
AWIPS platform onto an AWIPS server. This can cause severe system problems if
the non-AWIPS platform goes offline and leaves a stale mount on the AWIPS
server. Instead, use FTP or mount the AWIPS partition onto the non-AWIPS
server.

2.3.1.2 Data Server

The DS is the best place to run applications that require a heavy use of the
mass storage file system. See paragraph 3.9.2 for discussion of file system
considerations. Applications that access the database can be run from any
server or workstation, but if an application is generating a lot of short
transactions versus a few long ones, the DS may be the best location for the
application.

2.3.1.3 Applications Server

The performance of AS1 is very critical in severe weather and is most impacted
by severe weather because of the applications running on it. For this reason,
shall be avoided for running locally developed applications. AS2 is heavily
used by LAPS once an hour for about 10-20 minutes. Between these runs,
however, the CPU is relatively idle. The “ucron” and Glance utilities can be
used to view this pattern of execution.

2.3.1.4 Workstation

After locally attached non-AWIPS platforms, graphics or text workstations are
probably the best choice to run locally developed applications. If a
workstation is used, it does not impact all users and should not have an
impact on the servers. If the graphics workstation is running D2D with many

Table 2.2-1, cont.

June 2001

-7

frames of image data, memory swapping may become an issue and will impact the
performance of the local user. If you are going to use a workstation, use one
with low usage, not the workstation at the Public or Aviation desks.

An application running on the workstation should have its executable located
on the workstation. If the application is on an NFS partition, the
application will load across the LAN (causing slower application loads), and
also will swap across the LAN. If a program does not load very often and
doesn't use enough memory to make swapping an issue, the trade off may not be
significant. Future plans to increase the disks on workstations will allow
more applications to be mounted locally on workstations.

2.3.1.5 LAN and CPU Considerations

The largest percentage of LAN traffic is NFS traffic. Any locally-developed
software that extensively uses an NFS-mounted partition should be aware of the
impact not only on the LAN but the server CPU utilization. It has been
determined that if large files are being written to and from NFS partitions,
CPU resources on the server can sometimes be reduced by moving the application
to the server where the data resides. Case in point: The Satellite decoder
was moved from the AS to the DS. The CPU utilization increase on the DS was
essentially zero. The increase in the CPU utilization because of the
Satellite decoder move was offset by the decrease in the nfsd CPU utilization.
The AS CPU utilization and LAN utilization obviously decreased. PerfView is a
good tool to see the traffic and CPU utilization of these kind of
considerations. Use of PerfView is discussed in Appendix 6.

There is also a consideration of your site’s hardware baseline. Some
configurations have sufficient room on an AS while other sites may have more
room on the DSs. The following table shows the different configurations and
what the relative performance factors are (with the K100 as "1"). This should
just be used for information. A better look at your system with GlancePlus or
PerfView will give you a better feel for where there are available CPU
resources.

Table 2.3.1.5-1. Possible Server Combinations.

DSs ASs

K220/2 D350

D380/2 D370/1

D380/2 K100

K220/4 D350

Table 2.3.1.5-2. Performance Factors for AS and DS.

Relative Performance Factors - AS Relative Performance Factors - DS

K100 1 K220/2 2.5

K350 1 K220/4 4.8

Table 2.2-1, cont.

June 2001

-8

D370/1 2.2 D380/2 3.5

2.3.2 Local Development User Accounts

Each AWIPS system will be configured with one user account on the Data Server.
Other accounts specifically for local applications development should be set
up by the System Manager. The user account for development shall be kept
separate from the account(s) used in normal operations in order that the data
access and system resources used in development can be controlled. A pseudo
user shall be created to run locally developed applications. It will be
easier to track the impact of the applications using the MeasureWare software
and tools (See Appendix 6). Create a user called “localapps” and where
possible execute the local applications as that user. The developer and user
accounts shall be given read-only permission to AWIPS system and data files so
that no crucial data are inadvertently overwritten or deleted. Creation of
user accounts and setting of file permissions are covered in the Chapter 2 of
the AWIPS System Manager's Manual.

2.3.3 Local Development User Resources

Disk space is a major issue for local development. Developers will need a
allocation of disk space for their code and temporary data sets. The preset
user account will be provided with a fixed partition of size 460 MB (WFO) or
2240 MB (RFC) of disk space. Developers will have an additional 300 MB area
on the shared (mirrored) data volumes of the DS, in /awips/dev. This area
will be created as part of the site installation procedures. Both /home and
/awips/dev are shared (mirrored) data volume of the DS. The System Manager
will be able to create individual user areas under this directory.

Since these allocations are fixed, it is unlikely that a local applications
developer will inadvertently "fill up" the disk storage on the DS with a
runaway application. It is up to the System Manager to assure that developers
and users do not obtain or use access to other areas of the disk on the DS, or
to disk storage on other machines. With 300Mb in the developer's partition,
disk space will be at a premium, so either the system administrators will have
to restrict developers from exceed disk sizes by maintaining quotas, or the
site will have to develop a policy for storing and removing files.

Release 4.3 provides a new disk partition for site-specific applications and
data. The partition, /data/local, is sized at 990 MB on the shared (mirrored)
data volume of the DS. The primary purpose of this partition is for storage
of local data acquired via LDAD. The partition may also used for other
site-specific purposes such as site-developed executables and scripts required
for operations. The site shall maintain these partitions below the 90%
capacity level to prevent disk thrashing, as well as ITO alarms to the NCF.

2.3.4 Local Development Directory Structure

All shared tables, executable files, etc. shall be placed into the existing
areas under the /awips/dev directory (~/data, ~/bin and ~/sharedlib). Home
directories for site developed software or for special users (e.g. fxa or
informix) shall not be in baselined operational or COTS directories (e.g.,

Table 2.2-1, cont.

June 2001

-9

/awips/fxa or /opt/informix). All home directories for users and/or pseudo
users shall reside in either the /awips/dev or /home partitions.

Users can add paths to their local development area, or to the site's
executable files, yet they shall not modify any of the AWIPS paths. When
developing new software, users may wish to have the executable files placed
into their own development area rather than overwriting an existing version of
an application that is in general use. In addition the users shall maintain
their own ~/tmp space for storing temporary data files.

AWIPS utilizes the standard UNIX configuration directory structures. For
instance, when storing man pages, these are always placed under the
appropriate man/man# directory. This means that if an application is
accessible to the site, then there shall be a /man directory in the
development directory structure for any man pages or help documentation.

Source Code

Users shall utilize the /awips/dev/develop/src directory for storing their
source code. There shall be a global Makefile for any directories under this
directory, and a configuration file for the different Make options
(MakeConfig). Any additional databases shall comply with Informix data
replication requirements (see the System Manager's Manual). All source code
shall be compatible with NIS, meaning that Internet addresses shall not be
hard coded.

Executables

Once the development of a new function is complete, and has passed through the
site's debugging and testing cycle, the final version of the executable
file(s) shall be placed in the /awips/dev/bin or /awips/dev/sharedlib areas.
When source code from /awips/dev/develop/src/dir/ is compiled the Makefile
shall place the executable file in the /awips/dev/bin area.

FXA Areas

No source code or executable code shall be placed into the /awips/fxa/bin or
/awips/fxa/src areas. In addition, since the data areas are for incoming data
only, any processed data for local applications shall be stored in the local
data area.

Data Files

All configuration files and shared data files shall be stored under the
/awips/dev/data directory. Users can then share those files which will not be
modified each time a local application is invoked.

Local data

Release 4.3 provides a new disk partition for site-specific applications and
data. The partition, /data/local, is sized at 990 MB on the shared (mirrored)
data volume of the DS. The primary purpose of this partition is for storage
of local data acquired via LDAD. The partition may also used for other

Table 2.2-1, cont.

June 2001

-10

site-specific purposes such as site-developed executables and scripts required
for operations.

Temporary Files

Local software developers should use /tmp for writing temporary files.
Files left on /tmp will be purged, but usually have sufficiently long
lifetimes to be used by transient applications. Developers should not
use directories like /var/tmp and /usr/tmp.

Scheduled File Backup

OmniBack is the facility that makes a tape backup onto the archive tape, and
is scheduled to run each night. The /home, /data/local, and /awips/dev areas
are included under the basic AWIPS backup plan. It shall not be necessary for
developers to institute any additional procedures for a guarantee that their
work has been saved to tape archive. All site-specific files shall be saved
(i.e., a backup copy made) in a directory covered by OmniBack. Common
practice is to create a /home/siteID (e.g., /home/CLE) directory for these
files. This shall include saving older versions of files in a predefined
format (i.e., filename.MMDDYY).

2.3.5 CPU Allocation Control

Standard scheduling and resource allocation for processes under HP-UX are
handled by the HP-UX Scheduler. The HP-UX Scheduler has its own dynamic,
automatic methods of allocating CPU resources to processes, and does not allow
the setting or adjustment of CPU priorities. A separate CPU resource
management tool, the Process Resource Manager (PRM), has been provided with
the COTS suite on AWIPS. PRM is a low-overhead, configurable, process
scheduler which allows the System Manager to control the dynamic HP-UX
Scheduler priorities and control the amount of CPU available to users and
applications during periods of heavy CPU demand. Detailed descriptions and
instructions for set-up and use of the PRM are contained in the HP Process
Resource Manager User's Guide, which has been delivered with the HP
documentation package for AWIPS.

PRM allocates CPU resources by PRM groups, which are independent of other
types of groups on the system, such as user groups. Individual users can be
assigned to a PRM group, and then all their owned processes will inherit the
user's PRM resource allocations of the group. In addition, individual
applications can be assigned to a PRM group, and then the application will get
the resource allocation of its assigned group, no matter what the resource
allocation is for the user who is running the application. All system
processes are initially assigned to PRM_SYS, a reserved process resource group
(PRMID) of ID number 0 (zero). If not otherwise assigned, all other user and
application processes are assigned to the OTHERS group, PRMID 1. Besides
these two groups, up to 14 additional groups may be defined.

Each PRM group is assigned a percentage of total CPU, where the sum of the CPU
percentages for all defined groups must equal 100%. While competition for CPU
usage is low, processes are generally allowed as much CPU as necessary based
on their resource demands. However, as total CPU usage begins to increase

Table 2.2-1, cont.

June 2001

-11

towards 100%, the PRM control on CPU resources kicks in to limit processes to
as much CPU as their group has been allocated.

PRM's usefulness in controlling the resources required for local development
depends on how the local development environment is set up. If all local
software development takes place on a WS wholly dedicated to the local
software developer, then the PRM will be of no use since it is only available
on the AS and DS, and since there would be no competition for resources on the
dedicated WS in any event. If local software development is performed via
remote login to accounts on the AS or DS (not recommended), then PRM can be
set up to assure that local development activities do not impact the
operational servers and scheduled processes on those machines.

2.3.6 Controlling Permissions

As previously mentioned, local application developers shall be under a
separate account for their activities, and that these user accounts be given
read-only permission to AWIPS system files and operational data files. These
restrictions will limit the chances that a local software development activity
will result in a corruption of a critical file in the system or the database.
It is up to the individual System Manager to determine whether to handle local
developer accounts and file access permissions as a user group, or on an
individual user account basis.

Access control for data contained in the Informix RDBMS must be handled
differently than data in Unix files. Permission to directly access or modify
information in tables in the database is handled through the granting and
revoking of privileges to individual users. Control of concurrent access to
information in a database table is handled in real time through setting and
releasing database locks on specified information in a table. Access to the
Informix database is discussed in Section 4.1.8.

Since access to the text database in Informix is through a UNIX utility and
not directly to the Informix database through SQL, there is no protection to
this portion of the database besides the built-in limitations of the APIs.
See Section 4.2.7.3 for cautions and guidance on use of the text database
APIs.

2.3.7 Operating System

The guidance here is to NOT make any HP-UX operating system changes. This
includes patches and kernel system parameters. Patches are carefully studied
by PRC for dependencies and any conflicts with other patches, and then tested
extensively with the AWIPS baseline. Patches are very hard to back out of
cleanly and SHALL NOT be applied at all. If a patch is required, the request
shall be routed through NWS HQ for consideration in a future build.

2.3.8 Network Information Services (NIS)

Changes to /etc/hosts, /etc/passwd, /etc/group and /etc/services are managed
through NIS databases. All changes to these files must be done on DS1 and
propagated via NIS. Reference the AWIPS SMM Section 3.0 for details.
Modifications to “local versions” of these files are not allowed.

Table 2.2-1, cont.

June 2001

-12

Inconsistencies between NIS and "local versions" will cause software to behave
unpredictably and/or erratically.

2.3.9 Informix dbspaces

An Informix dbspace is a named area of allocated disk storage. In the AWIPS
baseline, Informix databases (see Section 4.1.2) are created in specific
dbspaces. Informix dbspace assignments are defined via the national baseline
and therefore SHALL NOT be changed by site personnel. Loading of site-
specific databases is not allowed, except in the case of RFCs which have
predefined dbspaces for this purpose.

2.3.10 Wide-Area Network

The WAN is designed and sized for NCF monitoring and product distribution.
Any other use is unauthorized and subject to discovery and subsequent
notification to the sites that are misusing the WAN. An example of misuse is
NFS mounting of another sites' disks. This should now be disallowed in the
router filtering all sites. Another example of misuse is the export of
displays across the WAN. The NCF does this occasionally when troubleshooting
a site problem, but this SHALL NOT be done by the sites for any reason. Use
of the WAN for the exchange of products and files shall not be done on a
regular basis.

2.3.11 Disk

This section discusses disk allocation and system file information, and it
provides guidelines that are crucial for local software developers to consider
for storing their applications.

The Mass Storage on AWIPS is redundant for reliability purposes. The
mirroring of the mass storage makes writes to the mass storage slower than
writes to non-mirrored storage. If a local application is creating a
temporary file that does not need to be redundant, the best performance can be
accomplished by writing to non-mirrored storage. Volume Groups 0 and 1 (vg00
and vg01) are the internal disks and are not mirrored; Volume Group 2 (vg02)
is the mirrored mass storage device. A “bdf” command will show you what
partitions are on what disks.

As a reminder, please clean up or overwrite temporary files.

2.3.11.1 Disk Allocations

Disk allocations are defined in the Mass Storage Design document and a
controlled via the national baseline and therefore SHALL NOT be changed by
site personnel. The unallocated disk space is evaluated on a per-release
basis and is intended for future use. Local software development shall be
done in the /awips/dev or /home directory, using /home/localapps for common
source code and individual developers’ subdirectories (e.g.,
/home/localapps/devname) for other items. Release 4.3 provides a new disk
partition /data/local for site-specific applications and data. The primary
purpose of this partition is for storage of local data acquired via LDAD. The
partition may also be used for other site-specific purposes such as
site-developed executables and scripts required for operations.

Table 2.2-1, cont.

June 2001

-13

2.3.11.2 System File Information

The following table lists critical directories and files, and guidelines on
their treatment by the developer or system manager.

Table 2.3.11.2-1. File System Guidelines.

File or Directory Guidelines and Cautions

/ (root) All directory ownerships and permissions at the root level

shall be left alone.

/.profile
/.rhosts

Changes to these files may severely impact operations of the

platform.

/etc This is a sensitive area and should be approached with caution.

Be aware of NIS-managed files and, as discussed above, any

changes to NIS-managed files MUST BE made on DS1 only.

/etc/rc.config.d These files are especially sensitive and shall not be modified

without prior discussions with Headquarters.

/etc/rc.config.d/netconf This file shall only be change by the site when assigning the

site-specific IP Address to the LDAD server. This assignment

is made by the "ROUTE_DESTINATION[1]" entry. No other changes

shall be made to this file. Changes to any "[0]" entries will

impact WAN access.

/var This partition contains many dynamic operating system files.

Caution should be taken whenever files are being deleted. When

freeing space in /var, files under /var/tmp and /var/adm/crash

can be deleted.

var/spool/cron/crontabs Files under this directory have been scheduled via the cron

daemon. Files shall NEVER be added/deleted from this

directory, as it could have adverse effects on the cron daemon.

Proper submittal/removal of a user's cron is through the

instructions in Chapter 18 of the SMM.

/stand DO NOT TOUCH. This area is for HP-UX kernel rebuilds.

/usr DO NOT TOUCH. This area contains UNIX tools. Many symbolic

links exist here and critical to proper operations of HP-UX.

/opt
/usr/local

These directories are managed via the national baseline and

therefore SHALL NOT be changed by site personnel. No products

shall be added/removed from these directories. The size of

these directories is evaluated whenever a new or upgraded

product is recommended for release. If sites obtain non-AWIPS

software products from HP that normally would be installed in

/opt, or public domain software that normally would be

installed in /usr/local, the installation of the package shall

be in a site-controlled directory (i.e., /home/localapps) with

symbolic links from /opt or /usr/local (if necessary).

Table 2.2-1, cont.

June 2001

-1

3.0 Coding and Documentation Guidelines

The material in this section is meant to be a guide to development of robust,
portable, maintainable software. The degree to which a local developer
adheres to a coding style and a set of standards may be a matter of personal
choice if that code will be used only by the developer or within the office.
Each WFO, RFC, or Region may have its own set of more comprehensive software
standards for software intended for wider distribution which may apply to a
locally-developed application. Suggested changes should be provided to your
regional LAWG representative to be included in future updates of this
document.

The AIFM coding and documentation guidelines are adapted from those originally
defined and used for AWIPS hydrometeorological applications development at the
Meteorological Development Laboratory and PRC, and for the DAR3E system at the
Forecast Systems Laboratory. Additional guidelines for development using
software tools and packages not originally part of AWIPS but used in D2D
(e.g., Tcl/Tk, C++) inside WFO-Advanced will be included in future releases of
this document.

3.1 Software Naming Conventions

This section contains AWIPS guidelines for naming of files, source
directories, and code symbols. The degree to which these naming conventions
need to be followed depends on the intended use for a local application, and
the history of the application. Applications which are not intended to leave
the local office or work in environments outside the core AWIPS hardware and
software may not need to follow the guidelines. The guidelines may not be
practical for medium or large applications which already exist (legacy code),
and which would involve a great deal or re-engineering or modification to meet
the guidelines. Adherence to the guidelines is required for new application
development which is targeted for national or regional deployment, or which
would have long lifetimes and portability to other platforms.

Naming conventions shall be used for locally developed applications; avoid
using the same (or similar) names as already existing applications, file
systems, or executables. This is especially true for common UNIX executables
and utilities like grep, more, and cat. Common extensions shall be used, such
as “.sh” for POSIX shell scripts, “.csh” for C Shell scripts, “.pl” for Perl
scripts, and “.f” or “.for” for FORTRAN applications source code, “.c” for C-
language source code, and “.C” or “.cpp” for C++ source code. Locally
developed applications shall be stored in a “local” subdirectory (e.g.,
/data/fxa/localapps or /home/localapps) using the guidelines in Section 2.3.4.
More detailed naming convention guidance is given in the sections that follow.

3.1.1 Name Lengths

File Name Length:

For portability, all file names, including programs, libraries, and the like,
shall be 14 or fewer characters. Source file names shall be 12 or fewer
characters to account for SCCS prefixes, for example:

/awips/dev/develop/src/ioutil/getGrid.c - contains the getGrid() function

Table 2.2-1, cont.

June 2001

-2

/awips/dev/develop/src/grib/loadObj.c - contains the loadObj() function.

Symbol Name Length:

Symbol names are the names used within the source and object code to reference
procedures and parameters. For example, in FORTRAN, the name that follows in
the PROGRAM, SUBROUTINE, or FUNCTION statement is the symbolic name of the
module, and may differ from the filename of the file containing the source
code for the module (see the above two C examples). ANSI standard name
conventions are too restrictive at 6 characters. AWIPS allows symbol names to
be unique up to 31 characters.

3.1.2 Public API Function and Subroutine Names

Public and Private APIs

Public APIs are those functions and subroutines which are not unique to a
single application, or which may be used now or in the future by other
applications (i.e., library routines, utility functions, services, etc.).
Private APIs are the individual functions and subroutines comprising an
application and unique to the application. It is a matter of judgement on the
part of the developer as to whether a function or subroutine developed for an
application is reusable by other applications and should be treated as a
public API or utility. There is no specific symbolic or file naming
convention for private APIs, although the names should attempt to be unique to
the extent possible, and the routines should be organized into subdirectories
according to Section 3.1.3.

The AWIPS public API naming convention for C is verbNoun, and for FORTRAN is
in the form VERB_NOUN. The individual public API modules shall follow the
verbNoun name convention. Note the use of case in the examples.

Example of a C prototype:

Status getGrid (Product_def the_criteria,
DBObject mySelection, float * myGrid);

Example of a FORTRAN prototype:

SUBROUTINE LOG_ERROR (Caller, Message, Error_Level)

3.1.3 Number/Naming of Subdirectories

The appropriate master directory shall be determined for each application or
library, and for each source module comprising the application or library.
Each master subdirectory shall be placed under the /awips/dev/develop/src
directory. Using the example from Section 3.1.1, the public API getGrid would
be placed in the /ioutil subdirectory, under /awips/dev/develop/src:

/awips/dev/develop/src/ioutil/getGrid.c - contains the getGrid() function

The module loadObj, which is a private subroutine of a GRIB decoder, is placed
in the /grib subdirectory which holds all the private modules of the GRIB
decoder application:

Table 2.2-1, cont.

June 2001

-3

/awips/dev/develop/src/grib/loadObj.c - contains the loadObj() function.

All the non-utility (private) modules of an application shall reside under the
master directory for the application. For large or complex applications, as
many additional subdirectories as needed in order to organize the code may be
defined under the master directory.

3.1.4 Symbol Names and Restrictions

Public Symbols (Variables, Constants, and Preprocessor Macros)

Public symbols are often declared as "extern" symbols in C, and declared in
COMMON blocks in FORTRAN. The public symbol naming convention for AWIPS is
adjectiveNoun for C, and ADJECTIVE_NOUN for FORTRAN. As with APIs, the public
designation refers to symbols that are used and known system-wide or in more
than one application.

Example of C public symbol:

extern int lastToken;

Examples of FORTRAN public symbols:

INTEGER LAST_TOKEN
PARAMETER LAST_TOKEN

Exceptions

The only exception to this naming convention is static functions and variables
in C. The prefix g_ notifies everyone of the scope of a C static symbol.

C Restrictions

Each language has a list of standard functions provided by the standard
libraries. Those names are restricted. Additional standards committees have
notified software developers about their intent to use additional symbols (for
example POSIX and ANSI C). In addition to a specific list of standard X/Open
functions and macros (see Systems Interfaces and Headers, Volume 2 of the
X/Open Portability Guide, Issue 4), ANSI C reserves for future use all symbols
beginning with:

__ macro (double underbar)
_[A-Z] macro
E[A-Z|0-9] macro
LC_[A-Z] macro
SIG_ macro
SIG[A-Z] macro

_ function
is[a-z] function
mem[a-z] function
str[a-z] function
to[a-z] function
wcs[a-z] function

Table 2.2-1, cont.

June 2001

-4

In addition to ANSI C restrictions, POSIX reserves for future use all symbols
that end with the following letters:

_t
_MAX

In addition to ANSI C restrictions, POSIX reserves for future use all symbols
that begin with the following letters:

B[0-9]
F_
I
LC_[A-Z]
O
O_
S_
SA_
TC
V
c_
d_
l_ (lower case L)
gr_
pw_
sa_
st_
tm_
tms_

FORTRAN Restrictions

FORTRAN has a list of standard functions provided by the standard libraries,
which are restricted. HP-UX FORTRAN provides a number of extensions to the
standard libraries, which shall also be avoided. Refer to the HP FORTRAN/9000
Programmer's Reference, Vols. 1 and 2 for a list of HP FORTRAN intrinsics,
utilities, and system functions.

3.1.5 Accommodating Backup/Failover: Floating names and addresses

All software shall be compatible with MC/Service Guard fail-over procedures
(refer to Section 5.6). This means that when addressing the data servers and
application servers from a local application, the application process must
utilize the floating IP address strategies. These would be accessed by
addressing either the data server (ds-<site>), or either application server
(as1f-<site> or as2f-<site>). In the case of a fail-over each of these
addresses will be mapped to the surviving CPU, and the appropriate packages
will be restarted.

As a result, if the application uses services on the AS or DS that are
protected under MC/Service Guard (e.g., access to D2D datasets on the DS), it
will still be able to transparently access those services if the service's
host machine switches to the designated backup machine. It does not imply
that the local application itself will be switched to the backup machine or
restarted if it fails. The application itself will be protected only if it is
set up under MC/Service Guard, which is an uncommon scenario.

Table 2.2-1, cont.

June 2001

-5

3.2 High Level Languages

Choice of Language

The language that is used for locally developed software should be based on a
number of factors:

1) performance requirement of application,
2) performance impact on system,
3) frequency of application,
4) use of application.

High-level (compiled) languages are the best choice where performance of the
application or minimization of system impact is an issue. The following
compiled development languages are supported for AWIPS: C, C++, and FORTRAN.
The infrastructure development is in C or C++. Rendering components may
interface with the X Window System in C, but may include calls to FORTRAN
subroutines for data processing. File I/O routines that are built on the
netCDF APIs for creating, reading, or writing netCDF data files may use their
choice of the FORTRAN, C, or C++ netCDF APIs.

All C and C++ code shall be compiled with the ANSI option.

3.2.1 Allowable C and FORTRAN extensions and features

This section describes a process for bringing legacy code and new software
into future versions of AWIPS. The information provided in this chapter draws
on the experiences gained from the Design, Development, and Testing (DDT)
teams, mainstream design, and prototyping efforts including Pathfinder.

Use of FORTRAN 77 Extensions

The following is a listing of the extensions to FORTRAN 77 that are allowed.
Extensions that are anticipated to be part of the FORTRAN 90 standards are
indicated (FORTRAN 90).

! BLOCK and LABELED DO LOOPS (FORTRAN 90).

! CYCLE statement (FORTRAN 90). The CYCLE statement is used to control the
execution of DO loops. When the statement appears in a DO loop it causes
the current iteration of the DO loop to be bypassed. The DO loop resumes
execution at the next index value, for example:

 DO 100 ICNT = 1,10
 IF (DB_PROD(ICNT).EQ.' ') CYCLE
 ZONEPRD(INUM) = DB_PROD(ICNT)
100 CONTINUE

! DO WHILE (FORTRAN 90). The DO WHILE statement is like the DO statement
except that the DO WHILE statement uses a logical expression to control
the loop, for example:

 DO WHILE (DB_PROD(ICNT).NE.' '.AND.ICNT.LE.MAXZNE)
 NAME = DB_PROD(ICNT)

Table 2.2-1, cont.

June 2001

-6

 ICNT = ICNT + 1
 END DO

! EXIT (FORTRAN 90). The EXIT statement is used to control DO loop
termination, for example:

 DO 100 ICNT = 1,10
 NCNT = ICNT + NCNT
 IF (NCNT.GT.MAXNUM) EXIT
 JROW(ICNT) = NCNT
100 CONTINUE

! INCLUDE (FORTRAN 90). The INCLUDE statement allows the compiler to
include and process subsequent source statements from a specified file.
Note: $INCLUDE statements are not allowed.

! IMPLICIT NONE (FORTRAN 90). The IMPLICIT NONE statement explicitly
reinforces declaration of variable names, which helps eliminate typing
errors. Although explicit declaration is encouraged for this purpose,
the FORTRAN convention for implicit typing shall be followed.

! SELECT CASE (FORTRAN 90). The CASE statement allows for execution of a
certain block of code based on the value of an integer, character, or
logical expression, for example:

 SELECT CASE (IELEMENT)
 CASE(1)
 ELEHDR = '12 HR POP'
 CALL PROCPOP(...)
 CASE(2)
 ELEHDR = 'TEMP'
 CALL PROCTEMP(...)
 CASE(3)
 ELEHDR = 'MXMN'
 CALL PROCMXMN(...)
 END SELECT

! Data types *n declarations. Explicit statements such as REAL*8 are
allowed, when needed. The normal word length should be used when
possible. Do not save memory by using INTEGER*2.

! STRUCTURE and RECORDS. The STRUCTURE statement defines the type, size,
and layout of a structure's fields and assigns a name to the structure.
RECORDS of the structure can then be declared. They allow the reading of
temporary flat files and help to avoid excessively long argument lists,
which detract from code readability. Mismatched argument lists are a
frequent source of bugs. However, this is another level of abstraction
and should be used only when needed. One example of when it is needed
would be a long call sequence that is used many times. Use of this call
sequence only once does not justify a structure. An example of the
structure statement is as follows:

 STRUCTURE /EFPC_S/

Table 2.2-1, cont.

June 2001

-7

 CHARACTER *3 STATLIST(MAXSTA)
 INTEGER ELEWARM12Z(21)
 INTEGER ELECOLD12Z(21)
 END STRUCTURE

! ALLOCATABLE, ALLOCATE, and DEALLOCATE statements. These statements allow
dynamic memory allocation and deallocation.

! Intrinsic functions. Allowable intrinsic functions that are FORTRAN 77
extensions are as follows:

- Bit manipulation - BTEST, IAND, IBCLR, IBITS, IBSET, IEOR, IOR, ISHFT,
ISHFTC, IXOR, SHFT, MVBITS, NOT, RSHFT, XOR, ZEXT

- HP-UX system intrinsic - GETARG, GETENV, IARGC, IGETARG
- Miscellaneous - SIZEOF

Note: Because we are using the generic form, the variables used can be
of different types (that is, type coercion of intrinsic arguments).

For more information, see the HP FORTRAN/9000 Programmer's Guide, Chapter
14.

! Variable and subroutines names greater than 6 characters (FORTRAN 90).
The limit is 31 characters.

! Underscore characters in variable and subroutine name (FORTRAN 90).
$ signs in character names are not allowed.

! Octal and Hexadecimal Constants. These constraints should be used where
they are definitely preferable to decimal for understandability.

! Vector Library functions. These functions are allowed when they are
adopted to improve performance and should be isolated when possible. For
more information see the HP FORTRAN/9000 Programmer's Guide, Chapter 16.

! Character and Noncharacter data items can share the same storage space
through the EQUIVALENCE statement (FORTRAN 90).

! *RETURN. Although the alternate return is part of FORTRAN 77, it should
be used sparingly.

! WHATSTR. Although not a FORTRAN 77 extension issue, this is necessary
Source Code Control System (SCCS) information, for example:

 CHARACTER*100 WHATSTR
 WHATSTR = "+[-] %W%"

! List directed internal input or output, for example:

 CHARACTER*20 C
 WRITE (C,*) I,J,K

FORTRAN Extensions That Are Not Allowed

Table 2.2-1, cont.

June 2001

-8

! Dangling comments (FORTRAN 90). Dangling comments are comments at the
end of a line following an !.

! ALIAS. The ALIAS statement provides a way to direct the compiler to use
the appropriate parameter passing convention to communicate with routines
written in other high-level languages such as C. A workaround is to use
the + u compiler flag and pass everything as a reference. See the HP
FORTRAN/9000 Programmer's Guide, page 19-29 for more information.

! Automatic array declaration (FORTRAN 90).

! BYTE and DOUBLE PRECISION data type declarations.

! Dollar sign ($) characters in variable and subroutine names (FORTRAN 90).

! Lower case characters in a user-defined name (FORTRAN 90).

! TAB character formatting.

! Data initialization in a TYPE statement. A TYPE statement cannot be used
to assign initial values to declared variables.

! Alternative interpretation of logical variables. Errors such as "Mixed
data type assignments with logical variables," "Comparison of logical
variables in a equation," and "Arithmetic operations on logical variable"
are not allowed.

! Automatic character strings. Automatic character strings are character
variables whose length is specified using a nonconstant, for example:

 SUBROUTINE A(C,L)
 CHARACTER*L C

These strings are used to implement the socket connection between ICWF
routines.

! The %VAL and %REF statements.

! ON statement. The ON statement specifies the action to be taken after
the subsequent interruptions of a program's execution and allows for
trapping interrupts. No other signaling mechanisms are available.

3.2.2 Inter-Language Communication

Complications arise when compiling and linking programs composed of source and
object modules in different languages, for instance, calling a C function from
a FORTRAN program. The most common problems encountered when calling routines
of another language are summarized in the following paragraph. Refer to the
Programmer's Guides for additional guidance.

Using C Functions in FORTRAN Subroutines and Vice Versa

For applications that must mix C or C++ with FORTRAN, remember that FORTRAN
passes variables by reference, and C/C++ passes variables by value. Also,

Table 2.2-1, cont.

June 2001

-9

FORTRAN uses column-major for matrices, while C and C++ use row-major.
Character strings in C are null-terminated, while in FORTRAN they are not
explicitly null-terminated. Also, in FORTRAN, strings are represented as a
string descriptor composed of an address and a length by value. The
Programmer's Guides give suggestions or passing character strings between
C/C++ and FORTRAN.

Certain other restrictions apply when using C++ compiled code in a mix with
FORTRAN routines, even if the mixed routines are all C. The top level or main
routine must be written in C++ or C when compiling and linking with the C++
compiler. All FORTRAN subroutines called from code compiled by the C++
compiler must be declared in a header file and be preceded by 'extern "C"' to
prevent name mangling by the compiler. Any header files which do not have
this must be wrapped by 'extern "C" {<headerfile.h>}' when they are included.
FORTRAN libraries, such as 'vec' and 'U77', will need to have their paths
explicitly defined when including them in your load list.

3.2.3 Source Code Compilation

Two high-level language compilers are provided with AWIPS in support of local
applications development: the HP FORTRAN compiler, and the HP ANSI C
compiler. Both the FORTRAN and C compilers are capable of compiling code
under the respective ANSI standards.

Beginning with Release 5.0, several of the GNU family of freeware compilers
are provided. Currently, both the gnu C and gnu C++ compilers are delivered
and installed in /opt/gcc. The version of gcc used on AWIPS is 2.95.2.
Official documentation is limited but many websites and user groups are
available to learn more about GNU and gcc.

3.2.3.1 To compile C code under the gnu C++ compiler

Reserved.

3.2.3.2 Compiler Flags

On most of the systems, ANSI C is delivered. It is more efficient than other
options because it is precompiled and can be optimized for the platform. When
using C, there are optimization flags that are recommended. To determine the
model of the server or workstation on which you intend to run your software,
type "uname -m". Use Table 3.2.3.2-1 to determine the model.

Table 2.2-1, cont.

June 2001

-10

Table 3.2.3.2-1. Server and Workstation Models

All WKs 9000/770 J210

DS 9000/819 K200

9000/859 K220

9000/861 D370

9000/871 D370

9000/820 D380

AS 9000/809 K100

9000/821 D350

9000/861 D370

When compiling use the following flags: +DAModel +DSModel - (.e.g. +DAD380
+DSD380) If you want to make it so that your software will run on any of the
platforms use +DAportable instead. This information is documented in detail
in the man page for "cc". Optimization is upward compatible but not backward.
Code optimized to run on a D series will not run on a K or J series platform.

3.2.4 X-Windows System Libraries

The X libraries are installed on the systems and are available for compiling
code into either C or C++ applications. There are several X references that
may be useful. Some of these were included as system documentation:

 Xlib documentation for C Language X Interface information
 HP XLIB EXTENSIONS
 HP XLIB PROGRAMMING MANUAL VOL 1
 HP XLIB REFERENCE MANUAL VOL 2

 X Toolkit Intrinsics documentation for C Language Interface
information

 HP X TOOLKIT INTRINSICS PROGRAMMING MANUAL VOL 4
 HP X TOOLKIT INTRINSICS REFERENCE MANUAL VOL 5
 HP X WINDOW SYSTEM C QUICK REFERENCE

The latest HP documentation may be found at the following Web links:

 Contents of the HP-UX 10.* (June 1999) Collection
http://docs.hp.com/dynaweb/hpux10/@Generic__CollectionView

 Contents of Development Tools & Distributed Computing Collection
http://docs.hp.com:80/dynaweb/hpux10/dtdcen0a/@Generic__CollectionView

 Using the X Window System
http://docs.hp.com:80/dynaweb/hpux10/dtdcen0a/b696/@Generic__BookView

 X Window System C Quick Reference Guide

Table 2.2-1, cont.

June 2001

-11

http://docs.hp.com:80/dynaweb/hpux10/dtdcen0a/b670/@Generic__BookView

3.3 Scripting Languages

3.3.1 Tcl/Tk

Tcl/Tk is the current language used for most of the user interfaces. See the
Software Engineering Working Group (SwEG) Freeware Page for the latest
information on public domain software for AWIPS Releases 4.3,5.0,5.1.1 and
proposed for 5.1.2. Tcl is an interpretive tool command language with
additional utilities for scripting. Tk is the tool kit used by D-2D for
creating graphical interfaces (windows, widgets, etc.). Since Tcl is an
embeddable language, it is not dependent on system resources (doing ps's,
etc.) like Perl is.

Tcl/Tk tends to utilize its own version of utilities, rather than the systems
utilities (e.g., Tcl has its own sorting utility). In many cases, a C program
might suffice in application development, but it would require the developer
to write hundreds of lines of code compared to a single Tcl line. Tcl can
spawn children, as the user can use the "exec" command, but otherwise the
versions seem to be self-contained.

Tcl may not perform as well as other methods. The run-time application may
not be as efficient as a C application, but the required development time for
Tcl applications may be much less than that for C programming. In one test,
an application was written in Tcl by a good Tcl programmer in 10-20% of the
time it took for the same developer, also an expert C programmer, to write the
program in C.

For applications with the following attributes, it makes sense to use a
scripting language such as Tcl/Tk:

 the main task of the application is to integrate and coordinate a set
of existing components or applications,

 the application must manipulate a variety of different things,
 it must have a graphical user interface,
 the application does a lot of string processing,

 the functionality of the application will evolve rapidly over time,
 the application is easy to extend and customize in the field,
 the application must run on a diverse set of platforms.

On the other hand, for applications with the following attributes it makes
more sense to use a compiled programming language for the application:

 the application implements complex algorithms and data structures,
 execution speed is critical (e.g., the application must frequently

scan datasets with tens of thousands of elements),
 the functions of the application are well defined and slow to change.

More information on Tcl/Tk can be found at:

 http://www.scriptics.com/products/tcltk/

Table 2.2-1, cont.

June 2001

-12

3.3.2 Shell Scripts

For most purposes, it is recommended that shell or Perl scripts not be used to
implement operational programs. Because scripts require more computing
overhead and take longer to execute than similar compiled programs, their use
needs to be evaluated on a case-by-case basis. Several factors need to be
considered to decide if scripts should be used or not: frequency of
execution, load on the system caused by the program, and priority of execution
of the program. If all or a combination of these factors is high then scripts
may not be the right choice for this program. Some examples of when script
should be used are: to start or stop other processes (daemon processes),
installation programs, initialization programs, localization programs, rapid
prototyping, or programs that don't get executed often (e.g., not more often
than once every ten minutes).

Over the evolution of the prototype to the AWIPS baseline, a number of script-
based applications have been rewritten into compiled C or C++ and the positive
impact system has been phenomenal. For instance, the purgeAllRedbook script
in R4.1 takes 14 minutes to run, uses an average of 60% of the CPU and is
responsible for approximately 7000 processes to be executed. In R4.2, this
process was included in the C language master_purge that purges everything
(including the Redbook now) in less than two minutes.

Scripts have their place, however. Start and stop scripts, initialization
scripts, installation scripts, and one-shot applications are OK, as is the use
of scripts for rapid prototypes. However if an application is expected to run
on a cycle, or if the frequency of the application is suspect, compiled
languages are faster and also kinder to the system.

3.4 Environment Variables

Environment variables are a way of setting and passing environment information
from the Unix shell to processes and subshells under it. Environment
variables in HP-UX are discussed in a general fashion in Chapter 11 of the
manual Using HP-UX. The manner in which environment variables are set and
used depends on the shell that you are using. See the entries for the
commands csh, ksh, or sh in HP-UX Reference, Volume 1. Depending on how a
local software application interfaces with AWIPS components, it may be
necessary for the application process to determine and use the value of
environment variables defined for one or more of the AWIPS subsystems (e.g.,
D2D, IFP, WHFS).

Among other purposes, environment variables are used in D2D to set the
locations of master directories for meteorological datasets and system-
specific datasets, and to configure the local site. The system environment
variable that will most commonly be required for local application development
is $FXA_DATA, which defines the path to the meteorological data directories
(e.g., /radar, /sat[ellite], /point/METAR, /point/RAOB, /Grid subdirectories).

Environment variables for WFO-Advanced are defined in the file ~fxa/.environs,
and may be locally overridden by ~fxa/.environs.hostname. They are set at
login to the operational account, or can be set by a user by running the
script ./usr/local/fxa/readenv.sh (sh, ksh, or bash), or readenv.csh (csh,
tcsh, or zsh) depending on the shell used. The environment variable

Table 2.2-1, cont.

June 2001

-13

$LOCAL_BIN will be added to the D2D .environs file for Release 4.0. If the
site creates applications that will tie into either D2D or the D2D display
(see Section 5.1), then the PATH in $LOCAL_BIN, which is set to
/awips/dev/bin, assures that the appropriate binary file will be found by D2D.
Keep all local environment variables in the file /awips/dev/data/rc.<SITE>,
and then source this file upon login. Local environment variables shall be
named <SITE>_VAR, etc.

While in the operational account, the names and values of all the currently
set environment variables can be determined from the command line in the
terminal window using the env command (from the C shell). It may be necessary
to have the System Manager access the values of environment variables if file
protections do not allow individual users to do so, or if the user is
prevented access to a terminal window from the operational account.

The environment variables for the AWIPS components will not automatically be
available to developers in their personal accounts. To use the AWIPS
environment variables in a developer account, they or their initializing
scripts must be either copied to the selected shell's login script for the
developer's account, or source’d or manually entered at each session.
Otherwise, their defined values must be literally incorporated into the code
or script in which they are to be used, which is an undesirable solution.

3.5 Shared and Archive Libraries

Libraries are files with collections of compiled object code that can be used
in building a program. For example, when you want to use the atan2 function
in your C program, you can use the function available in the C compiler's math
library. To do so, you tell the system where to find the function by
including the math library in your program by using the #include <math.h>
preprocessor directive. You don't have to write source code or compile the
atan2 function yourself--object code for the function resides in the C math
library, and it only needs to be located and linked into your program in order
for your program to use it. In a similar manner, individual developers can
create libraries of related, reusable functions, and can use libraries created
by others.

3.5.1 Descriptions

Two types of libraries can exist on HP-UX: archive and shared. The linking
mechanism defines the primary difference between archive and shared libraries.
In the case of an archive library function, a complete, separate copy of the
referenced function's object code is created and linked with the main
program's object code in assembly of the executable program. A program built
of all archive library object code is a complete, stand-alone executable file.

In the case of a shared library, the linker does not link a copy of the
referenced object code into the executable file, it only notes the address
locations of where the function can be found. When the program is executed, a
dynamic loader looks at the executable to see which shared library routines
are required by the program, finds or brings them into memory, and binds them
to the executable at run time. Chapter 2 of the Programming in HP-UX gives a
description of archive and shared libraries, and tells how to identify whether

Table 2.2-1, cont.

June 2001

-14

a library file is archive or shared. Chapter 5 of the same manual describes
how to select and incorporate functions from these libraries into your code.

Sharing of object code takes place when multiple executing processes
simultaneously use the same function from a shared library. In this case, the
multiple processes all use the same in-memory chunk of machine instructions
("text segment") for the function, although for each process, there is a
separate set of data ("data segment") used by the function, which is specific
and unique to the process. The HP-UX operating system automatically keeps
track of which data segment belongs to which process, and keeps them
separated.

The primary advantages of using shared libraries are threefold. First, it
reduces the size of the executable program on disk, since the shared portions
of the executable are in the library, not copied and inserted into the
executable as in the case of archive library code. Second, it can reduce the
total size of the executables in memory, since multiple processes which refer
to it can share a single machine instruction memory segment relating to the
shared library function. Third, it allows the shared library portions of the
code to be modified, recompiled, and relinked separately, without the need to
recompile and relink the executables that use the library. Any executables
that use the shared library will automatically see the updated version of the
shared library, which will be attached at run time.

A disadvantage of using a shared library is that the executable is not
complete since it doesn't contain the object code for the library function, so
if the executable is moved to another platform, it won't work unless the
shared libraries are also available on the new platform. Also, if the shared
library is moved after being linked to a program, it may not be able to be
found at run time. Another disadvantage is that since both the shared
libraries and the main program must be accessed separately from the disk at
run time, there is some performance overhead at the time the shared libraries
are accessed and bound to the main program.

The way a library function must be compiled and its object code moved into a
library differs depending on whether it is to be part of a shared or an
archive library. These details will not be included in this document. Refer
to Chapters 3 and 4 of the Programming in HP-UX manual for instructions on
creating archive and shared libraries, respectively. It is worth noting that
you can use a mix of archive and shared libraries in the building of an
executable, but for a given library, you can only use one version of the
library, either the shared or the archive version. If not otherwise
specified, HP-UX will use the shared version of a library by default if both
types exist and can be found, although this behavior can be overridden.

3.5.2 Recommendations for Use

There are no explicit guidelines or restrictions for or against the use of
shared and archive libraries for local application development on AWIPS. If
code portability is of the greatest concern, then it might be preferable to
use archive libraries exclusively. If disk and memory space are critical to
the application, or if large chunks of library code are used simultaneously by
multiple processes, then the use of shared libraries may be of some benefit.

Table 2.2-1, cont.

June 2001

-15

For most HP system libraries (such as the math library) provided under the
HP-UX compilers, both an archive and a shared version are generally available.
It is preferable to use the shared versions of system libraries wherever
possible, since these libraries are likely to be available on most platforms
and portability will not be a large issue. To minimize the possibility of
configuration management and disk storage problems, only one version of a new,
user-written library shall be created. For AWIPS system libraries, the
existing version of the library shall be used (any other option will be
nonexistent without access to the source and the proper compiler) and that no
additional versions of AWIPS system libraries be created on-site.

3.6 Error Logging and User Notification

Error logging is called for cases where the developer wishes to perform error
reporting from within the application, either as a result of internal
application error checks, or from receipt of a non-success status value
returned from a called function. Error logging information, by definition,
gets written into an error log which can be reviewed at a later time, or it
may be able to be automatically redirected to some other destination within
the system. The typical external destination for critical errors that need
immediate attention is the Network Control Facility (NCF).

The types of conditions that should typically result in calls to standard
error logging APIs include detection of:

! system or application errors that require some attention by the developer
or maintainer of the code, where the error information is useful for
debugging, and

! critical system warning or failure situations that need the attention of
the System Manager or the NCF. Such situations may also require
immediate user notifications to the user or System Manager. These
conditions are not likely to be known to, or of concern to, the local
software developer. Since the NCF is not responsible for, local
applications development, local developers must not log errors in their
applications using options that would result in notifications to the NCF.

Diagnostics are generated and reported for the benefit of software developers
and maintenance personnel. The simplest diagnostics are print statements
within the code. Diagnostics are part of the development process but not
meant for the operational code. They are removed from the source code or
disabled through conditional compilation when the release version of the
software is prepared.

Individual lines of code can be marked for conditional compilation in HP
FORTRAN by placing a D in Column 1 of the statement. See Chapter 4,
"Debugging FORTRAN Programs," of the HP FORTRAN 9000 Programmer's Guide for an
explanation and example on the use of the -D conditional compilation option of
the FORTRAN f77 compiler.

In C, the #ifdef BUG_CHECK and #endif directives must be used to block off one
or more sections of code for conditional compilation. The blocked section(s)
of code is (are) included or ignored by the compiler depending on whether or
not the symbol (called BUG_CHECK in this example) has been defined with a

Table 2.2-1, cont.

June 2001

-16

Since the WFOs and RFCs do not typically have access to AWIPS source code
or the C++ compiler, it is not possible to use the APIs described below in
local applications development. The descriptions are included in
anticipation of development of a set of generic APIs usable in local
applications.

#define definition. To turn off (on) the conditional compilation of the
blocked code, remove (add) the #define BUG_CHECK definition from (to) the
source code.

User notification calls are made when status or error messages or
informational data are to be immediately displayed to the user when a detected
condition or error occurs. Situations in which user notification is performed
are those cases where the code is working properly, but the user may need to
take some corrective action (e.g., "Too Many Open Windows, Close A Window and
Try Again"), or needs to be informed or warned about a temporary situation
that prevents a request from being fulfilled (e.g., "Requested Data Not
Available", or "File Locked By Another User").

Current APIs

Error logging APIs exist for both D2D-integrated and non-D2D-integrated
applications. The D2D-integrated error logging API is a C++ class called
LogStream.

The non-D2D error logging APIs are called hmHMU_logError (C language) and
HM_HMU_LOG_ERROR (FORTRAN). These non-integrated APIs provide a consistent
binding to a lower-level API, which may be changing. Their calling sequences
are described in a manual page.

A user notification API currently exists only for integrated D2D applications.
The user notification API is a C++ class called Announcer. When and if it
becomes possible to use this API from local applications, it will be
documented in the AIFM.

Location and Maintenance of Error Logs

AWIPS hosts already have established logging directories that may be used by
local applications keeping in mind the following:

1. Daily server log directories located under /data/logs/fxa/YYMMDD (e.g.,
/data/logs/fxa/990801) already exist.

2. Persistent processes (those that run continuously once initiated) that
create logs in (1) must ensure logs are broken at the start of a new day
so proper purging can take place (logStream may be available to sites in
the future).

3. Operational logs should contain the minimum amount of information
necessary; i.e., turn debug off.

4. Include timestamps and easily traceable filenames, PILs or WMO headers so
data can be tracked through system when troubleshooting.

5. Report success and failure of process.

Table 2.2-1, cont.

June 2001

-17

6. For non-persistent processes, use append to add logging information to
existing logs. Do not create multitudes of small logs; they make
navigating log directories cumbersome.

7. Error logging in local application directories can also be accomplished
if care is taken. If log breaking and purging using existing
infrastructure is not feasible it is necessary to explore other
approaches including using the log file size as a measure of when to
break the log. For instance, filename.log is moved to filename.log.old
when a certain size is reached and the new log is written to. In this
case only filename.log and filename.log.old ever exist, so purging is not
necessary and disk space usage is known.

3.7 Internal Documentation

The guidelines for internal documentation of locally-developed FORTRAN, C, and
C++ source code are the same as those used by the central AWIPS software
development teams. These guidelines are documented fully in Attachment 1
(FORTRAN), Attachment 2 (C code), and Attachment 3 (C++ code), and the reader
is referred to them for details. A few items will be discussed in an
introductory manner in the following sections.

3.7.1 Prologues and Source Control

Prologues

Templates for prologues (also sometimes called headings) for files, functions,
programs and subroutines are shown in the attached FORTRAN and C/C++
development guidelines. It is recommended that these templates be used for
all new source code development, with modifications as appropriate. If a
template other than these standard AWIPS guidelines is used, then it shall at
least be consistent for all the new modules making up the application, and
shall contain the same information as the AWIPS standard.

Existing (legacy) code from other systems, packages, or applications are often
mixed and used in the development of new applications. If these outside
sources of code are historically reliable and well-structured but are poorly
documented, then it is a judgement call as to whether to use them as-is, or to
try to improve their documentation. It is expected that existing code modules
from a given source or package used in development of a new application shall
at least be documented consistently within the package. If practical, and
especially if the legacy code is being modified for use with a new
application, existing code shall be upgraded to be consistent with the new
application modules.

Source Code Control

HP-UX provides the SCCS (Source Code Control System) utility as part of the
operating system software. Background and instruction of use of SCCS are
described in Chapter 14 of the HP manual Programming on HP-UX. Additional
freeware packages, RCS (Revision Control System) and BCS (Baseline
Configuration System), are available for use by local developers. All these
packages have been used successfully by different development organizations in
controlling versions of national AWIPS software. Any local application
development effort of significant size or which involves multiple developers

Table 2.2-1, cont.

June 2001

-18

should use a version control package to manage onsite application development.
The advantages of a source code control system generally outweigh the costs of
learning how to use the system.

The following description refers to use of SCCS keywords, and how they relate
to source code prologues.

Source code control information about a module (e.g., revision number, data,
or time; current time on retrieval, etc.) can be included in the source file
by placement of keywords into the source file. ID keywords are "codes" that
are typically placed in the prologue of the source module, either inside
comment blocks or assigned to variables, as appropriate to the type of module
(see "Where to Put ID Keywords" in Chapter 14 of Programming on HP-UX). The
keywords are automatically expanded (replaced with up-to-date values of their
particular information, in plain-language) by the source code control system
when the file is retrieved for anything other than editing. Then the what
command can be used to access the keyword expanded values from the source,
object, or executable files.

3.7.2 Header Files and Locations

Header files are typically used to hold declarations referred to in multiple
source modules, and prototypes for functions used in more than one module.
Header files specific to a module or function shall be named the same as the
filename of the module, except with the .h (for C/C++) or .H (for FORTRAN)
file extension. Essentially, every function used more than once shall have an
associated header file containing both the function prototype and declarations
used outside the module. Note that all C functions shall have prototypes
defining all arguments in order to reduce the possibility of errors in their
usage, and to meet the ANSI C standard. Constants used thoughout an
application, package, or system shall also reside in a header file with a
descriptive name, e.g. thermo_consts.h for thermodynamic constants used by the
utilities in a thermodynamic variable computation library. Header files shall
contain no executable code.

Header files shall reside in the same subdirectory as their associated source
code module(s), and shall be placed under source code control the same as
source files containing the executable code. Refer to Chapters 7 and 8 of the
MDL C Software Implementation Conventions for detailed guidelines on header
files, functions, and their organization. FORTRAN programmers shall follow
the same set of header file guidelines for those language features that are in
common with C.

3.7.3 Standard Header Files

ANSI standard header files such as limits.h, float.h, and stddef.h contain
definitions which support the portability of the resulting code in which they
are used, and shall be used (along with others as needed) in all C and C++
applications. Note that with the new ANSI standard for C++, the extensions
for the primary standard header files for C and C++ may change (C) or be
dropped altogether (C++), although the old .h extensions should still be
supported for C as secondary header files. Refer to the HP C++ language
documentation provided with the HP aC++ compiler package (reference titles not
available at the time of this writing).

Table 2.2-1, cont.

June 2001

-19

3.8 External Documentation

The requirements for external documentation of a local application are driven
by the need to: (1) support the continued maintenance of the application; (2)
assess potential conflict areas with core software; (3) provide a reference
for the NCF to use when troubleshooting issues that may arise at a site; (4)
identify applications that could be affected by future builds, and (5)
facilitate the sharing of local applications within regions and nation wide.

To satisfy these needs, the AWIPS local application external documentation
shall include the following:

• Local Application Registration (LAR) information. The LAR information is
submitted to the Local Application Database and must be submitted by the
developer before an application can be registered for use by a site. The
LAR includes:

S application description (e.g., name, version, language),
S software inventory (source code, header files, data files),
S interfaces with AWIPS data files and databases
S external connections (e.g., LDAD),
S runtime signature information (e.g., host machines, CPU, disk usage,

communications),
S performance/system resource information, and
S reference information (e.g., maintenance programmer).

Note: This information is required for all applications covered under the
AWIPS Local Applications Policy (NWS 2000).

For applications that generate products covered by national policy or
standards, a sample output shall be provided to the LAWG OM
representative for consultation to ensure it meets the national
standards.

• User information. Information needed to allow another user at the
originating site or another location to effectively run the local
application. The user information includes:

S instructions for configuring the application*,
S running the application and recovering from errors, and
S maintaining (e.g., purge, clean-up) the application*.

Note: A ‘*’ indicates that this information is required if a site has
agreed to share its application with other sites.

• Installation information. Information need to allow another user install
a local application. The installation information includes:

S makefiles and/or instructions for compiling/linking executables,
S application environmental information, and
S installation procedures.

Note: This information is only required if a site has agreed to share
its application with other sites.

Table 2.2-1, cont.

June 2001

-20

• Maintenance information. Additional information needed to allow for the
continued maintenance of the application by someone other than the
originator of the application. This information includes:

S design information, including data flows,
S scientific formulas and mathematical algorithms,
- testing information (e.g., procedures, data), and
S an application history including enhancements and known software

deficiencies.

Refer to Appendix 4 for a detailed description of the local application
requirements for AWIPS external documentation.

3.9 Input, Output, Display, and Printing

This section is not meant to be a tutorial on Unix I/O or the X Window System
(X), so it will only summarize the required details about the devices,
utilities, and options. Table 1.3-1 lists the I/O devices available on
specific hosts on the WFO and RFC AWIPS. Access to these devices is
controlled by the system setup and configuration. Details of the default
setup of each of these devices is summarized in Table 3.9-1. You may need to
contact your System Manager for specific information if your site setup varies
from the initial AWIPS configuration.

Table 3.9-1. Input and output device configurations on AWIPS. In the table
entries, XXX stands for the 3-character station ID of the WFO/RFC site.

I/O DEVICE HOST NAME SETUP

Color
Graphics
Monitor

ws1-XXX, ws2-XXX,
ws3-XXX, ws4-XXX,
ws5-XXX

xt1-XXX, xt2-XXX,
xt3-XXX, xt4-XXX,
xt5-XXX

ws1-XXX:0.0,
ws1-XXX:0.1
...
ws5-XXX:0.0,
ws5-XXX:0.1

xt1-XXX:0.0,
...
xt5-XXX:0.0

CD-ROM ws?

DAT
Autoloader
Tape Backup

DS (physical
connections)

Each WS, DS, AS
configured under
OmniBack

B&W Laser
Printer (PCL,
Postscript)

LAN lp1_XXX

High Speed
Laser Printer
(PCL,
Postscript)

LAN lp3_XXX RFC only

Table 2.2-1, cont.

June 2001

I/O DEVICE HOST NAME SETUP

-21

Color Inkjet
Printer (PCL,
Postscript)

LAN lp2_XXX

Internal Disk
Storage

DS for local
applications

under /awips/dev NFS mounted

External Mass
Storage (DAT
drive)

As configured As configured Portable, host is
as configured

Color Resource Conflicts in X

If you are running an application under the X Window System on the same host
that is running D2D, ADAP²T, NWSRFS, or the Text Workstation, then your
application must share the color resources of the X server. If the colors
that your X application requires are not to be found in the default colormap
in use in the AWIPS applications, then the likelihood exists of having a color
resource conflict between your application's private colormap and the AWIPS
packages. X application programmers should be aware of these potential
problems and their effects, and proceed with caution. A detailed discussion
of color issues in X are beyond the scope of this document, however, some
practical guidelines which apply are given below.

If developers are creating applications which will utilize the X color tables,
then they shall request colors in the 'shared' mode, or 'read only' mode.
This will allow applications to share the color table. Creating color tables
in the 'unshared', or 'read/write' mode may create a conflict with other
applications. In this case unpredictable events may occur on the display.
There is no formal policy on use or control of X color resources between local
applications and AWIPS baseline applications. However, applications which
have the potential for national implementation shall be developed so as not to
have color conflicts with the AWIPS default colormaps.

These guidelines address output to a workstation display. Describing how to
create new D2D depictables (integrated displays in D2D) is out of the scope of
the AIFM. Local software developers should use Tcl/Tk or X to develop their
own user interfaces and display windows for their applications.

Printing and Printers

Printing text files on AWIPS is a relatively trivial matter and local
applications have been written to print from AWIPS. The lp command can be
used, with options, to send a text file to the printer of choice. If the CDE
Text Editor is used, there is a Print option in the File menu which will print
the contents of the open text file in the editor.

The simplest way of printing the graphical contents of a screen or window on
AWIPS is to use the standard utilities xwd, xwud, and xpr that HP-UX provides
for X window screen capture, display, and printfile preparation, respectively.
xwd captures the contents of a selected window and writes it into a user-

Table 2.2-1, cont.

June 2001

-22

specified X window dump file. xwud redisplays the contents of the captured
dump file in a new window on the screen, which is a useful tool for visually
validating what you have captured in xwd before sending it to the printer.
xpr takes an X window dump file and formats it for printing on a selected
printer or printfile format (e.g., postscript) according to user-specified
options. The last step in printing an xwd dump is to send the xpr output file
to the printer queue with the lp command.

The dump files can be prepared for printing in color on the HP DeskJet 1600
printer by using the xpr options as follows:

xpr -device dj1200 -output <outfile> <infile>

X window dumps can also be printed in black-and-white on the laser printer,
using -device ljet, but the results are unpredictable if the captured image
has a lot of colors or gray shades. The number of gray shades in the printed
output for the laser printer is controlled by the -gray n option of xpr, where
n ranges from 2 to 4. If n=3, approximately nine gray shades will result. If
n=4, then the number of discernable gray shades will be about 15. The maximum
window size of the xwd captured image that can be printed on the LaserJet 4
without clipping, with the option -gray 4, is 600x787. Both xwd dump files
and xpr output print files can be quite large depending on the options used
and the size of the captured window, so it is important to delete the files
(especially the usually-larger print files) once they are no longer needed.

Since both the LaserJet and DeskJet printers are postscript-capable as
configured in AWIPS, ps (postscript) can be used as the print device option in
xpr. Postscript files produced by xpr can also be exported from AWIPS for
printing on any other postscript printers (see the discussion of the CDE
ImageView tool, below, for other graphic file export options). It should be
noted that the postscript option results in a much larger printfile than the
device-specific (PCL) options, yields no noticeable difference in the printed
quality, and only produces black-and-white output on the color printer.

The X window dump utilities and lp can be run from the Unix command line, and
Unix man pages exist that describe the options and capabilities of each
utility. CDE also provides Action icons named Xwd Capture and Xwd Display
which run the utilities xwd and xwud. These icons are located in the Desktop
Tools submenu under the Applications Manager menu in the standard CDE setup.
No corresponding CDE Action icons exist for printing. However, by using xpr
and lp with predefined options, a set of CDE Actions could easily be created
to print X window dump files to each available printer. With a little more
ingenuity, the entire process of capturing a screen, printing the data, and
cleaning up the intermediate files could be combined into a single Action or
macro.

Besides Xwd Capture, CDE also provides another tool, Capture Screen, for
capturing a window or a screen. It is located in the Digital Media submenu
under the Applications Manager menu in the standard CDE setup. Capture Screen
improves on Xwd Capture in that it allows the screen dump to be saved directly
into one of several graphical image file formats, including xwd. The tool
ImageView, in the same submenu, provides for display and manipulation of many
types of existing graphic or image files (e.g., TIFF, PCX, XWD, GIF), as well
as conversion of the files from one format to another. With ImageView, xwd

Table 2.2-1, cont.

June 2001

-23

dump files can be converted to standard graphics file formats for inclusion as
graphical figures in word processing applications, or for display by other
image rendering or printing applications. ImageView also provides the
capability to modify the brightness and contrast of the captured image/graphic
data. If the tools and printers are properly set up, printing can be done
directly from Print option of the ImageView File menu. On-line help is
available from within CDE for all these tools.

June 2001

-1

Note: According to current plans, by AWIPS Build 5 all existing plotfile
storage of decoded hydrometeorological data will be eliminated and replaced
by netCDF.

4.0 Data Management and Access

Most products from the SBN are initially placed in raw directories, with the exception of most text
products. Products from the SBN are initially placed in /raw directories. The
Decoders then typically read them, process them, and delete the raw version.
Sites that choose to do this should carefully select specific headers and
avoid using wildcards since the overhead of writing these data to disk can
affect overall system performance If the input requirement is for the raw
product, the best way to accommodate this is to modify acq_patterns.txt file
to direct the acquisition server to store the product into a locally defined
directory. From this directory a local application could process the product
and not have to contend with the baseline decoders that will delete the raw
product. CAUTION: This directory could grow infinitely to fill the partition
that it is in, so much care is required to assure that the directory is kept
purged. There is discussion on purging of directories in the section 4.1.9 of
these guidelines.

4.1 Data Storage/Access Packages (updated to Build 4.3)

Meteorological and hydrological data are stored in a multitude of manners and
formats on AWIPS, but can be categorized into four main groups:

! flat files (Unix text and binary files of various formats),
! NetCDF (network Common Data Form) files (flat files of a common format,

with user-defined data contents and data types),
! plotfiles (binary flat files of specific format and content for rendering

by D2D depictables), and
! Informix relational database tables.

Each combination of data source and type is considered a separate data class.
Some data classes are stored in multiple formats in both raw and decoded form
to support different applications on AWIPS. A summary of data storage methods
and data formats for each of the existing AWIPS data classes is presented in
Table 4.1-1.
Table 4.1-1 Storage formats and methods for the current classes of AWIPS

online hydrometeorological data.

DATA CLASS
UNIX Files RDBMS

Flat File NetCDF Plotfile Informix DB

NCEP Grids All grids,
decoded

June 2001

DATA CLASS
UNIX Files RDBMS

Flat File NetCDF Plotfile Informix DB

-2

METAR Hourly files.
Most decoded
elements, SI
units, both
hourlies and
specials, and
coded METARs

Hourly Files.
Selected
elements,
surface plot
units,
hourlies only

Individual
coded METAR
reports.
(circular
storage,
limited # of
hours)

RAOBs (Build 5)
Decoded BUFR
RAOB reports

Decoded BUFR
RAOB report
sections

Coded ASCII
RAOB reports

Lightning All elements All elements

Wind Profiler All elements All elements

Maritime All elements

LDAD:
- Hydro
- Mesonet
- Manual

All elements
All elements
All elements

All elements
N/A
N/A

WSR-88D One image or
graphic
product (see
Note 1), one
volume scan
time, per
file

Alphanumeric
and tabular
data from
text-only
products or
included with
images and
graphics

GOES Images All

Redbook
Graphic

One coded
product, one
valid time,
per file

Text Products Raw METAR,
LDAD, Marine
(See Section
4.2.3)

Selected AFOS
PILs, coded
(e.g., METAR)
and plain-
text products

ADAP²T
Digital
Forecasts

All (TBD
Build 5+)

BUFR MOS
Forecasts

MDL file
system, one
model, cycle
per file
(decoded)

Raw BUFR
encoded MOS
reports
(Build 5)

LAMP
Forecasts

MDL file
system

June 2001

DATA CLASS
UNIX Files RDBMS

Flat File NetCDF Plotfile Informix DB

-3

Verification Archive files
(data older
than 2 mos)

Latest 1-2
months data

Site-Specific
(non-map)

D2D
localization
and ADAP²T
files

ICWF
configuration
data

Map Bkgds Binary files,
Shape and BCD
formats

Note 1 to Table 4.1-1: Radar items of the same product type with different
Data Levels, Spatial Resolutions, Vertical Level or Elevation Angle, (e.g.,
Base Reflectivity), Center Point (Severe Weather Analysis), or Accumulation
Period (User-Selectable Precip) are considered different products.

4.1.1 Flat Files

There are currently three primary categories of flat file data storage on
AWIPS:

! NetCDF files hold decoded observational data including upper air
soundings and METAR reports; decoded NCEP model grids; and remapped
(locally, or by NESDIS) GOES images. NetCDF files can be read and
written with a common set of netCDF APIs.

! Binary plot files are in various formats specified by the developer of
the depictable code that reads them, and generally involve custom access
routines to read (write) data from (to) them.

! Radar products received from the WSR-88D RPGs are in NEXRAD Level IV
Archive format, also known as the RPG-to-PUP format. Except for text
messages, they are stored exactly as received from the RPG, with one
received product to a file.

Each of these formats is described briefly in the following sections.

4.1.1.1 NetCDF

A portion of the AWIPS data stream is processed by the suite of decoders and
stored within /data/fxa as netCDF files. These can be identified easily as
they are stored in subdirectories named netCDF. Local applications can use
these files as input keeping the following in mind: (1) netCDF files may not
include all raw data, (2) netCDF files will be purged by fxa-data.purge; and
(3) data is already displayable in AWIPS. Data for AWIPS data classes are
stored in netCDF (network Common Data Form) files are accessed by netCDF APIs.
NetCDF provides a method of organizing and storing array-oriented data, such
as model grids, imagery, and sets of METARs, in a "self-describing" file
structure. The software for accessing netCDF files is distributed and

June 2001

-4

maintained by Unidata. WFO-Advanced uses both the C++ and the C versions of
netCDF. A Perl interface for netCDF is available, but is not used in AWIPS.

Unidata has published the "NetCDF User's Guide for C" and the “NetCDF User’s
Guide for FORTRAN” to describe:

! the history, development, and philosophy of netCDF;
! the contents, organization, and structure of netCDF files; and
! the usage of netCDF software (APIs).

These two guides are well written, and include example code. Unidata has also
published the “NetCDF C++ Interface” as a reference to the C++ classes and
methods used for netCDF file access. All three publications may be viewed on
the Internet at url “http://www.unidata.ucar.edu/packages/netcdf”. This web
site also includes a man page for netCDFPerl (the Perl interface for netCDF),
and other useful documents.

The details of netCDF files and APIs as applied to specific AWIPS data classes
is presented in the discussion of the various data classes.

NetCDF Terminology Primer

Quick definitions of some key netCDF vocabulary follows:

 ! attribute: data about data; ancillary data; metadata. Attributes give
information about a specific netCDF variable or, in the case of global
attributes, about the netCDF file as a whole.

 ! CDL: Common Data form Language. A convenient, readable way of
describing or defining netCDF files. CDL is read by the netCDF utility
program ncgen to create a new netCDF file.

 ! coordinate variable: a netCDF dimension that is also a netCDF variable.
A coordinate variable is a physical coordinate that is also used as a
netCDF dimension.

 ! dimension: used to specify the size of a netCDF array variable.

 ! global attribute: data about data; ancillary data; metadata. Global
attributes give information about the netCDF file as a whole.

 ! primary variable: the data. A netCDF variable that is not a coordinate
variable. The model output grids themselves; the satellite images
themselves; the METAR field values themselves.

 ! record dimension: a netCDF dimension of unlimited size. A netCDF file
can contain at most one record dimension.

 ! record variable: a netCDF variable whose first dimension (in C, C++, and
Perl) or last dimension (in FORTRAN) is the record dimension.

 ! unlimited dimension: another name for record dimension.

Table 4.1-1, cont.

June 2001

-5

 ! variable: an array of values of the same data type. Variables may be
scalar (0-dimensional).

Six data types are supported by netCDF. These are given names as defined
enumerated type values in netCDF’s C++ software (in netcdf.hh), as #define
constants in netCDF’s C software (in netcdf.h), and as PARAMETERs in netCDF’s
FORTRAN software (in netcdf.inc). The names and programming language
equivalents of the six types and strings are summarized in Table 4.1.1.1-1.

Table 4.1.1.1-1. Correspondence between netCDF and programming language
variable types.

netCDF

C++

netCDF

C

netCDF

FORTRAN

netCDF

Perl

C++

and C

FORTRAN INFORMIX Perl

ncByte NC_BYTE NF_BYTE netCDF::BYTE unsigned

char

- - integer

ncChar NC_CHAR NF_CHAR netCDF::CHAR char CHARACTER CHAR integer

ncDouble NC_DOUBLE NF_DOUBLE netCDF::DOUBLE double DOUBLE

PRECISION

FLOAT or

DOUBLE

PRECISION

double

ncFloat NC_FLOAT NF_FLOAT netCDF::FLOAT float REAL REAL or

SMALLFLOAT

double

ncLong NC_INT NF_INT netCDF::LONG long INTEGER*4 or

INTEGER

INTEGER,

INT, or

SERIAL

integer

ncShort NC_SHORT NF_SHORT netCDF::SHORT short INTEGER*2 SMALLINT integer

array of

ncChar

array of

NC_CHAR

array of

NF_CHAR

array of

netCDF::CHAR

char * CHARACTER*n string string

To use netCDF in C, you must include netcdf.h in each source file containing
netCDF calls or references to netCDF pre-defined constants (located in
/usr/local/netcdf-3.4/include), and link to libnetcdf.a (located in
/usr/local/netcdf-3.4).

To use netCDF in C++, you must include netcdf.hh in each source file
containing netCDF calls or references to netCDF pre-defined constants (located
in /usr/local/netcdf-3.4/include), and link to libnetcdf_c++.a (located in
/usr/local/netcdf-3.4).

To use netCDF in FORTRAN, you must include netcdf.inc in each source file
containing references to netCDF pre-defined constants (located in
/usr/local/netcdf-3.4/include), and link to libnetcdf.a (located in
/usr/local/netcdf-3.4).

To work in Perl, the first line of the Perl script must be:

#!/usr/bin/perl

Table 4.1-1, cont.

June 2001

-6

with the “#” being the first character in the line. To use netCDF in the Perl
script, the second line must be “use NetCDF;” (without the quotes).

4.1.1.2 Plot Files

Plot files have been replaced with netCDF storage for all displayable data
with the exception of lightning data at CONUS sites. For lightning data, both
plot and netcdf files are created.

4.1.1.2.1 Data Keys, Data Access Keys

Deferred.

4.1.1.3 WSR-88D Radar Products

WSR-88D products are provided to users in the form of a message which contains
two or more blocks of information. The blocks are: a Message Header block, a
Product Description block (PDB), a Product Symbology block (PSB), a Graphic
Alphanumeric Attributes block (GAAB), and a Tabular Alphanumerics block (TAB).
A WSR-88D product data message consists of the Message Header, PDB, and one or
more of the remaining blocks. A WSR-88D product data file contains all of the
blocks in the product data message, in the same order as which they are
transmitted and received. A detailed description of the data blocks is beyond
the scope of this document. For reference, the block formats are described in
Section 3.5.1.3 of the NEXRAD RPG/Associated PUP Interface Control Document
(ICD), which is maintained by the NEXRAD Operational Support Facility (OSF).

The radial or raster image data and any graphical data are contained in the
PSB. Graphical annotations comprising storm attribute data and provided for
display with image data or with special symbols products (e.g., with
mesocyclone or tornado vortex signature symbols) are contained in the GAAB.
These graphical overlays are produced by the RPG only for selected derived
products. Text products and text-only portions of data describing WSR-88D
site-adaptable parameters are contained in the TAB.

Image data for most WSR-88D base products and raster- and radial-format
derived products are packed in run length encoded (RLE) format. The run
length encoding algorithm transforms strings of duplicated data values into
(1) a data value, and (2) the number of consecutive data points which take
that value. WSR-88D image data in RLE format need to be be unpacked prior to
display generation or other processing. Unpacking of the RLE data consists of
determining the data value and length of each RLE segment, and sequentially
assigning these data values to the corresponding (length) number of bins or
pixels of the full radial or rectilinear data arrays.

Section 4.2.4.4 of this document describes the locations and functions of
existing AWIPS routines which unpack the RLE data and extract the product data
contained in the individual blocks.

4.1.1.4 Local Data Files

AWIPS uses /data/fxa and /data/fxa_local to store most baseline data. Release 4.3, a new disk
partition was provided for site-specific applications and data if storage

Table 4.1-1, cont.

June 2001

-7

parameters and purging is carefully considered. . The partition, /data/local, is sized at
990 MB on the shared (mirrored) data volume of the DS. The primary purpose of
this partition is for storage of local data acquired via LDAD. The partition
may also used for other site-specific purposes such as site-developed
executables and scripts required for operations. A few notes about
/data/local.

1. /data/local resides on the DS shared volume group and is mounted on
all AWIPS hosts, which makes data access simple.

2. User should have a good idea of average file number and size of data
to be stored so adequate purging parameters can be established prior
to automatically storing data. See section 4.1.9 Purging.

3. If /data/local is not used, consideration should be given to the
distribution method of the data and effects on system. Creating new
mount points is strongly discouraged.

4.1.2 Informix

Informix is a Relational Database Management System (RDBMS). Informix
contains and manages databases; it is not a database itself. Each database
under the Informix RDBMS contains a number of tables, which contain actual
data. The Informix Dynamic Server provides user and application access to
several baseline-defined databases in the Informix RDBMS.

The Informix Dynamic Server provides six user-created databases in Informix
RDBMS.:

1. fxatext - emulation of the capability provide by AFOS
2. hd2_0xxx - supports the hydrologic forecasting mission of the WFOs,

and RFCs.
3. hmdb - supports the ADAPT applications
4. scandata - supports the SCAN application
5. icwf_xxx - supports the IFPS application
6. wwa_xxx - supports the Watch/Warning/Advisory application

A detailed discussion of the schema of the databases is beyond the scope of
this manual; however, there are tools available that allow a user to inspect
these schema.

There are two principal ways of accessing table data in any Informix database:
via the dbaccess utility, and via programs which use Embedded Structured Query
Language (ESQL). Both C and FORTRAN ESQL programming utilities are provided
with Informix on AWIPS. In addition, the AWIPS textdb command-line interface
can be used from the command line, from a script, or within a program to
access the fxatext database (see Section 4.2.7).

4.1.2.1 The dbaccess utility

The dbaccess utility is an Informix-provided tool that can be used to access
data elements from any database within Informix. The dbaccess utility is
fully described in the DB-Access User Manual.

The most common use of dbaccess is to interactively browse a database. The
dbaccess utility provides a character-based interface which allows it. It is

Table 4.1-1, cont.

June 2001

-8

also possible to make changes to the schema of a database through dbaccess,
but sites shall not do this to any database other than those that are strictly
local (in other words, schema changes to the text and hydrologic database are
prohibited).

Another way to use dbaccess is to write a script containing SQL statements and
submit it directly to dbaccess on the command line, rather than having to
tediously type each Structured Query Language (SQL) statement from within
dbaccess; consult the manual for the proper syntax.

The final way to use dbaccess is to embed the command-line invocation of
dbaccess into a script. This is the approach taken by the trigger mechanism,
which is part of the text database. Consult the script
/awips/fxa/informix/StoreWWProduct.sh for an example of how to do this
scripting.

4.1.2.2 Informix ESQL/C

The second major way of accessing a database is through Informix ESQL/C.
ESQL/C is an application-programming interface (API). This API enables the
developer to embed SQL statements directly into a C program. This is, by far,
the most efficient way of accessing the database; drawbacks to this approach
include the requirement to program in C and to master the large number of
functions (and their return values) provided by ESQL. A detailed discussion
is beyond the scope of this appendix; consult the Informix-provided, two-
volume, Informix-ESQL/C Programmer’s Manual.

4.1.2.3 Informix Databases

4.1.2.3.1 Text Product Database

The Text Product Database supports the Text Workstation functions on AWIPS.
All incoming and locally-created AFOS and other text products are stored in
tables in the Text Product Database, “fxatext”. The products can be accessed
via AFOS-like commands using their AFOS Product Identifier Labels (PILs), and
can also be accessed and displayed from the Browser menu of the Text
Workstation. WSR-88D associated text and text-only products are also stored
in the Text Product Database and are accessible from the Text Workstation.
The Text Product Database and its contents are described in Section 4.2.7.
All read/write interactions with the text product database shall be handled
via the textdb utility (Section 4.2.7.3).

The other Informix storage of text products is the storage of individual raw
METAR reports in the rpt table of the hmdb database. METARs can be accessed
from the rpt table by a combination of their ICAO station call letters (e.g.
KMCI) “icao_loc_id”, type of report (METAR or SPECI) “report_type”, report
datetime “date” (from the body of the report), “nominal” date/hour, and
posting (storage) datetime “origin.” No APIs to access this database exist in
the AWIPS baseline code installed in the field. Also, the rpt table is likely
to be eliminated in the Build 5.x time frame as enhancements are made to the
fxatext database.

4.1.2.3.2 ADAP²T (Digital Forecast) Database

Table 4.1-1, cont.

June 2001

-9

Documentation of this database is deferred. The data storage mechanisms in
the ongoing transition from the Interactive Computer Worded Forecast (ICWF)
system to the Interactive Forecast Preparation System (IFPS) are in a state of
change for Build 5.0.

4.1.2.3.3 Hydrologic Database

The hydrological database in AWIPS contains current, decoded, hydrological
observations; river and reservoir stage and flooding data; gage, telemetry,
location, and observer data; and other hydrological and applications data.
The schema of this database is too complex to be described in this document,
and is unlikely to be understood except by those trained in relational
database design. Documentation of the hydrologic database exists and is
available from the NWS Office of Hydrology (OH).

The hydrologic database is accessible by dbaccess and Informix ESQL/C. A
third way of accessing the hydrologic database is through a set of APIs
developed by the OH. The OH APIs consist of the source code and the libraries
used by OH developers to build the executables that are installed at AWIPS
sites. The APIs are not part of the AWIPS installed software, and there is no
current plan to make them part of the installed WFO or RFC baseline, however,
the RFC applications developers are probably aware of, and using, these APIs.

4.1.2.3.4 Verification and Climate (hmdb) Database

Verification data for the Build 4.3 AWIPS Verification Program (replacement
for the AFOS VERIFY program) and the Daily and Monthly Climate Reports
Formatter are stored in tables in the hmdb database in Informix. Unlike most
other Informix data storage in AWIPS, verification data and (to a lesser
extent) climate data are stored in a truly relational manner across a number
of related data tables. As time permits, documentation of this database will
be compiled and posted on the AWIPS Local Applications Home Page.

4.1.3 Data on a Remote AWIPS

If products input from another site is a requirement, then a way to get the
data is to FTP the products from the site to your site. This is to be used
cautiously because of the impact of the FTP on your local system, and the WAN.
There is little impact on the remote system. There can be a large impact on
the WAN depending on the size and frequency of the requests as well as the
number of sites that are doing this. In R4.3, some radar products will be
distributed over the SBN and each site will be configured to ingest only those
products from radars in their radar dial list. At this time, the sites that
have implemented the FTP of radar products should cease this method and use
the baselined method. The action of FTP also has an impact on the local
system that is running the FTP client. FTP shall not be done on the servers
because of the impact to operations.

4.1.4 External Data

Products external to AWIPS have two methods of entering the system at this
time. One is through LDAD, the other is through the Asynchronous Product
Scheduler. The baseline decoders used in AWIPS are very sensitive to format
and should not be used to process data from external sources. If external

Table 4.1-1, cont.

June 2001

-10

NOTE: The fxatext database is undergoing a redesign for Build 5 to
accommodate international products and product retrieval by WMO Header.
The following description and the information in Section 4.2.7 represent
AWIPS up through Build 4.3.

data has to be processed by a decoder, it is to be performed on the LDAD by a
decoder implemented by the developer. Refer to Sections 6.1, 6.1.2, and 6.1.3
of the AIFM for further information.

4.1.5 Where and How to Access Data Sets

Data Files

In the data acquisition process, most of the incoming data are written to disk
in flat files (netCDF included). The amount of data kept is set as a system
parameter and depends on the disk space available. The data files are stored
on the data server in different directories depending on the type of data and
its format. A straightforward set of directory and file naming conventions is
used to identify the location, format, and contents of AWIPS data files. The
details of these file formats and directory locations are given in Section
4.2. Since the data directories on the system are NFS mounted, the data are
transparently accessible to all users (depending on their permissions), no
matter which machine within the local network they are using.

C++ APIs are used within the D2D system to display or to analyze the data.
Use of the D2D APIs for data access in locally developed applications is not
allowed at this time. The D2D APIs are complex and require that the data be
accessed via their data keys (see Section 4.1.1.2.1), and are tightly tied to
the D2D menus and depictables. Also, for many data types, the D2D APIs
currently access only the depictable-specific plotfiles, not the netCDF files.
Each of these plotfiles is in a unique format and requires a special API to
access the data within.

Since all the data in plotfiles are (or will be) also contained in netCDF
files, local applications shall use netCDF APIs to access the netCDF data
files wherever possible. Once the basic pattern of calls is known, it is easy
to modify existing APIs or write new APIs which read netCDF data files. Also,
utilities exist to automatically generate API source code in FORTRAN77 which
reads any netCDF file. An example of the usage and results of these utilities
for reading METAR netCDF files is included as Appendix 1 of this document.
The native netCDF APIs are documented in the NetCDF User's Guide. Rather than
coding directly from netCDF APIs, grids should be accessed using the wrapper
and navigation APIs described in Section 4.2.2.4.

Radar products are the only data stored in flat files that are not also
available in a corresponding netCDF format. These data are described in
Section 4.2.4. A convenient set of stand-alone APIs to access and read these
data from the AWIPS database does not currently exist. However, any code from
outside sources which accepts WSR-88D radar data that is in the RPG-to-PUP
(Archive level IV) format can directly access and process the radar data files
in the AWIPS database.

Informix Data Sets

Table 4.1-1, cont.

June 2001

-11

AWIPS stores decoded text products in the Informix fxatext database. The
fxatext database works on a circular buffer basis, storing the newest version
of each product over the oldest. The number of versions of each product or
category of products is specified in a table in the database. Locally-
developed applications may not, and need not, access the text product database
tables directly through embedded SQL. A Command Line Interface (CLI), textdb,
is provided for access to and control of the text product database, and does
not require a special setup of the database. Use of textdb is described in
Section 4.2.7.3.

4.1.6 Data Inventory Methods

In most cases, the file name of an AWIPS data file is also the valid time or
nominal hour of the data contained in the file. In most cases, a time
inventory of a given data set is accomplished by simply obtaining a listing of
the file names in the data subdirectory for a specific instance (e.g., GOES;
visible; CONUS scale; Lambert projection) of the data type. The D2D subsystem
of AWIPS provides specific methods for obtaining data inventories for each
data type, but these APIs are currently not practical for use by local
applications. The lack of APIs for performing data inventories is not a
hindrance to local application development, since in most cases it is trivial
to obtain an inventory for a specific data type.

Fixed-location, scheduled observations within a defined time period are placed
into netCDF files for a fixed set of nominal times (e.g., hourly files for
METAR). Each file contains observations within the time period for all
reporting stations for the data type. A supporting file can be read to obtain
the possible list of stations contained in the data file. It is necessary to
read the data in the netCDF file to determine whether it contains a valid data
element or report for a given station within the nominal time period covered
by the file. Time periods of data stored in, and the supporting files for,
each type of netCDF data file vary, and are documented under the appropriate
subsections in Section 4.2.3.

For observations occurring at random locations and times (e.g., lightning
reports), the data are generally partitioned by fixed time periods and placed
into a single data file for that fixed period. It will be necessary to read
the contents of the netCDF file to create a time inventory of the data at time
resolutions finer than the fixed periods of the netCDF data files, or to
partition station or random data into geographic subsets. See the appropriate
subsection under Section 4.2 for the relationship between file names,
supporting files, and the contents of the data file for the given data type.

Inventories for grid data are more complicated than those of the observational
data sets; however, APIs useful for local applications are provided for grid
inventory. The netCDF grid files contain all the grids for the analysis and
forecast times of an entire run of a given model, and are named according to
the model initial time. The grid access APIs described in Section 4.2.2.4
provide all the necessary capabilities for accessing and obtaining inventories
(models, areal scales, initial and forecast times, levels, physical elements)
of the grids contained in the AWIPS database of netCDF grid files.

Inventories for text products in the text database may be created by use of
the textdb command with the -A option. The output times will correspond to

Table 4.1-1, cont.

June 2001

-12

the storage times of the text product versions currently in the text database,
not the product valid times. See Section 4.2.7.3 for details on the use of
the textdb utility and the times of text products.

4.1.7 Time and Date Conventions

Date and time throughout AWIPS (except as otherwise noted elsewhere) are in
Greenwich Mean Time (GMT), also (and more correctly!) called Universal
Coordinated Time (UTC). Date and time within data and as used for computation
are expressed as C-language type "long" variables representing seconds since
00:00:00 GMT, January 01, 1970. Time differences and intervals are expressed
as C-language type "long" variables representing seconds. Dates used in file
naming and data tagging (when done in ASCII) are in ASCII yyyymmdd format
(yyyy is year, mm is month, and dd is day of month). Times used in file
naming and data tagging (when done in ASCII) are in ASCII hhmmss format (hh is
hour, mm is minute, and ss is second).

The ctime set of APIs provided with HP-UX, and callable from C++, C, and
FORTRAN, includes APIs to convert between seconds since 00:00:00 UTC, January
01, 1970 and a structure containing separate integers for year, month, day of
month, day of week, day of year, hour, minute, and second. The three primary
APIs of interest are mktime, gmtime, and localtime. The function mktime
assumes the time in the structure is local time, not UTC. The time in the
structure produced by localtime will be local time, not UTC. The UNIX
environment variable "TZ" indicates what time zone is "local time" for the
user's session. On AWIPS workstations, "TZ" is set to Universal Coordinated
Time. If you need to use local time, you are on your own. Refer to "Date and
Time Manipulation" in Chapter 10 of Programming on HP-UX for more information
on the ctime routines. See the Unix man page entries for date, time, and
gettimeofday as a starting point for learning about and using HP-UX system
times.

A couple of reminders:

 ! In normal places, for over half the year, "daylight savings time" must
be accounted for when using local time.

 ! Current practice, in those states where "daylight savings time" is
used, is to move clocks ahead one hour at 2 a.m. local standard time
(2 a.m. becomes 3 a.m.) on the first Sunday of April, and back one
hour at 2 a.m. local daylight time (2 a.m. becomes 1 a.m.) on the last
Sunday of October.

It is strongly recommended that you avoid local time. For further information
on ctime and its APIs, see the man page for ctime.

Always allow/use four digits for year!

4.1.8 Data Access Controls

Deferred.

Table 4.1-1, cont.

June 2001

-13

4.1.8.1 Informix Concurrency Controls: Database Locks

Deferred.

4.1.9 Purging

This section will address data purging; log purging was addressed in Section
3.6. Data purging, including temporary files created or used, is vital to
overall system performance. All directories including /tmp can be filled
causing system-wide problems. Testing of any local application should take
into account instances when a data maintenance process is not up for some
reason to fully assess problems that may arise.

The AWIPS baseline is delivered with two mechanisms for maintenance of data
storage.

• Purge is run every 30 minutes and is used to maintain the number of
products in specified directories. If you add a new directory of
products, a new line will be necessary in the purge configuration file to
specify the directory to purge and the number of files to keep in the
directory. Instructions for modifying the purge configuration file,
/awips/fxa/bin/fxa-data.purge, and potential ramifications are contained
in sections 9.1 - 9.3 of the SMM.

• Scour is run once a day and is used to clean up log files and a few items
not hit by master.purge. Scour deletes files based on date.
Instructions for modifying the scour configuration file,
/awips/fxa/bin/scour.conf, are contained in section 9.1.1.1 of the SMM.

Consideration must be given to temporary data storage. The local application
shall ensure temporary files are removed when processing is complete and add
safeguards to ensure purging takes place if a handling process is down or
slowed down due to data volume.

If you add data to any Informix database, you must write a custom purge
utility to purge your data from that database if the data is not purged
through existing routines (i.e., through dbpurge for the hydrology database,
purge_report for the hmdb, rm_tables and delete_log_files for ADAPT, and
through fxa-data.purge, via master_purge and scour, for fxa data).

4.2 Data Classes

The hydrometeorological data sets on AWIPS are divided into several classes,
based on the data source and the data type. The major data classes of AWIPS
have been listed in Table 4.1-1. Details of the data locations, formats,
content, and access methods for each data class are described in the following
subsections.

4.2.1 Aircraft Observations

Automated aircraft observations are not available in AWIPS in Build 4.3.
However, manual PIREPs are stored in the text database under their AFOS PILs.

Table 4.1-1, cont.

June 2001

-14

4.2.2 Grids

4.2.2.1 Naming Conventions for Grid Directories and Files

In AWIPS Build 4.3, grids are stored in netCDF files once the grid has been
unpacked (decoded from GRIB) or computed (in the case of isentropic levels or
derived grid variables; or MAPS, LAPS, or LAMP). Thus, all grid I/O is done
with netCDF APIs.

Almost all netCDF grid files are stored in a path named according to grid
source, scale, and model. Each file contains the complete model output grid
set for a single run of a given model and a given scale. The file names are
based on run date and time. Here is a template:

 $FXA_DATA/Grid/<source>/netCDF/<scale>/<model>/<yyyymmdd_HHMM>
|------------------- path ------------------| |---- file ---|

where:

$FXA_DATA is an environment variable specifying the root of the data
directory tree. This variable's current value is "/data/fxa".

<source> is either FSL, ISPAN, SBN, or MDL;

<scale> may be any of CONUS202, CONUS211, CONUS212, CONUS213, CONUS215,
FSL_CONUS_C, LAMP_Grid, LAPS_Grid, LATLON, MAPS_National, MSAS, NAT203,
NAT204, NAT205, NHEM201, REG207, and REG233;

<model> may be any of AVN, ECMWF, Eta, ETA_AIV, FCST, GWW, LAMP, LAPS,
MesoEta, MRF, NGM, RUC, RUC_AIV, 40km_MAPS;

yyyy is the 4-digit year;

mm is the 2-digit month;

dd is the 2-digit day-of-month;

HH is the 2-digit initialization (run) time hour; and

MM is the 2-digit initialization (run) time minute (usually 00).

Three examples follow:

- Northern Hemispheric 201 grids of the September 13, 1996, 0000z run of
the MRF model:

/data/fxa/Grid/SBN/netCDF/NHEM201/MRF/19960913_0000

- CONUS 202 grids of the September 13, 1996, 1200z run of the AVN model:

/data/fxa/Grid/SBN/netCDF/CONUS202/AVN/19960913_1200

Table 4.1-1, cont.

June 2001

-15

Note: The information in Section 4.2.2.2 and its subsections is
provided for completeness of documentation. It is not necessary to
know this level of detail to successfully access and process AWIPS
grids. The reader may wish to skip to Section 4.2.2.4.

- CONUS 202 grids of the September 14, 1996, 0000z run of the NGM model:

/data/fxa/Grid/SBN/netCDF/CONUS202/NGM/19960913_0000

The exceptions to the above file naming scheme include:

1) the ECMWF model, whose grids are stored in files having the path:

 /data/fxa/Grid/SBN/netCDF/LATLON/ECMWF/NHEM/yyyymmdd_HHMM

[Note the extra directory level (NHEM) below (after) the model (ECMWF)],

2) LAMP grids, stored in files having the path:

/data/fxa/Grid/TDL/netCDF/LAMP_Grid/LAMP/yyyymmdd_HHMM

3) SCAN QPF grids, stored in files having the path:

/data/fxa/Grid/TDL/netCDF/QPF_Grid/QPF/yyyymmdd_HHMM

4.2.2.2 Organization of netCDF Grid Files

All AWIPS netCDF grid files contain nineteen global attributes, eight common
dimensions, and eight common variables. The files contain additional
dimensions and variables, the names and numbers of these varying from file to
file. There are no coordinate variables (dimensions that are also variables
with values stored in them) for the vertical levels or the forecast (or valid)
times of the grids.

While not at first intuitive, not using a dimension for the vertical levels of
the grids does make some sense when you think about it. As an example,
consider the AVN 213 (National CONUS) temperature grids. There are 22 of them
for each forecast time: 2 meters above ground, every 50 mb from 1000 mb to
100 mb inclusive (that’s 19 levels), the surface to 30 mb above surface
boundary layer, and the tropopause. Since the values of a dimension must all
be the same type and units, the 22 levels of the AVN temperature grid cannot
straightforwardly be represented by a dimension. The AWIPS designers
incorporated lists of the values of the grid levels both as a character
attribute of each netCDF grid variable and as a companion attribute (this is
AIFM terminology, it is not a netCDF term) netCDF character variable.

4.2.2.2.1 Global Attributes

AWIPS build 4.3 netCDF grid files have nineteen global attributes. They are
as follows:

Table 4.1-1, cont.

June 2001

-16

1) “CdlDate” = an 8-character string giving the date of the cdl file used to
define the structure and contents of this file. This in effect
identifies the version of this netCDF file structure. The date is given
in “YYYYMMDD” format.

2) “DepictorName” = a 75-character string consisting of a unique identifier
for the map projection / areal coverage combination for the grids in this
file.

3) “ProjIndex” = a long int which identifies the projection of the grids
stored in this file.

4) “projName” = a 42-character string giving the name of the map projection
of the grids stored in this file.

5) “centralLat” = a float value giving the latitude (in degrees north) at
which the map projection is tangent to the earth.

6) “centralLon” = a float value giving the longitude (in degrees east) at
which north is “up” on the map projection.

7) “rotation” = a float value giving the angle (in degrees clockwise) the
map projection’s y-axis is rotated from north.

8) “xMin” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL’s use in D-2D.

9) “xMax” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL’s use in D-2D.

10) “yMax” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL’s use in D-2D.

11) “yMin” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL’s use in D-2D.

12) “lat00" = a float value giving the latitude (in degrees north) of the
lower left (southwest) corner of the grid.

13) “lon00" = a float value giving the longitude (in degrees east) of the
lower left (southwest) corner of the grid.

14) “latNxNy” = a float value giving the latitude (in degrees north) of the
upper right (northeast) corner of the grid.

15) “lonNxNy” = a float value giving the longitude (in degrees east) of the
upper right (northeast) corner of the grid.

16) “dxKm” = a float value giving the left-to-right (west-to-east) distance
in kilometers between two adjacent gridpoints at the latitude and
longitude given by global attributes “latDxDy” and “lonDxDy” defined
below.

17) “dyKm” = a float value giving the bottom-to-top (south-to-north) distance
in kilometers between two adjacent gridpoints at the latitude and
longitude given by global attributes “latDxDy” and “lonDxDy” defined
below.

18) “latDxDy” = a float value giving the latitude (in degrees north) at which
the “dxKm” and “dyKm” (defined above) values are valid.

19) “lonDxDy” = a float value giving the longitude (in degrees east) at which
the “dxKm” and “dyKm” (defined above) values are valid.

4.2.2.2.2 Dimensions and Coordinate Variables.

The netCDF grid files of AWIPS have no coordinate variables and only one
unlimited (or record) dimension. The unlimited dimension is named “record”.
It represents the time dimension of the grids.

The netCDF grid files of AWIPS have eight common dimensions for dimensioning
(sizing) variables (including grids). Additional dimensions representing the

Table 4.1-1, cont.

June 2001

-17

number of available levels of the model's grid variables vary from model to
model. Every dimension in a netCDF file has a size. The eight common
dimensions are:

1) "record" = number of valid times (initialization and forecast) available
in this model run. Example: for the AVN model, the size of "record" is
17. This represents initialization (0h) and sixteen forecast times (3h,
6h, 9h, 12h, 15h, 18h, 21h, 24h, 30h, 36h, 42h, 48h, 54h, 60h, 66h, and
72h) for a total of seventeen valid times. "Record" is used as the time
dimension of grid variables.

2) "n_valtimes" = maximum number of valid times (initialization and
forecast) this model run could have. The dimension "n_valtimes" is used
as the time dimension of companion inventory variables (see section
4.2.2.2.3.1).

3) "data_variables" = number of grid variables (physical elements; e.g.,
temperature, pressure, relative humidity) in the netCDF grid file. (This
really should be a global attribute, not a dimension.)

4) "namelen" = maximum number of characters that can comprise a name. The
size of "namelen" is fixed at 132 (names can be at most 132 characters
long).

5) "charsPerLevel" = number of characters used to represent a (string) value
of the companion levels variables (see section 4.2.2.2.3.1). Example:
for the NGM model, "charsPerLevel" has size 11, meaning level values are
11-character strings.

6) "x" = number of gridpoints in the x dimension. Grid subscripts (indices)
in the "x" direction increase from left to right, that is, from west to
east.

7) "y" = number of gridpoints in the y dimension. Grid subscripts (indices)
in the "y" direction increase from bottom to top, that is, from south to
north.

8) "nav". This dimension, which currently always has a value of 1, is not
now used. It is left over from an older CDL file.

The additional dimensions in each netCDF grid file are what shall henceforth
be referred to as levels dimensions. Associated with each grid variable are
two companion attribute variables. One of these is a string array (list) of
values of the grid’s vertical levels. The other is a character array serving
as an inventory of what level and valid time combinations within the grid
variable are present and which are missing. These two companion attribute
variables will be discussed in detail later. The levels dimension is the
number of vertical levels in the grid variable and its two companion attribute
variables. Levels dimensions have names of the form "levels_n" or
"levels_nn", where n and nn represent both the value of the levels dimension
and the number of levels for the parent grid variable(s). As an example,
consider the hemispheric AVN grids. It has eight grid variables:

 ! "gh" (geopotential height)
 ! "t" (temperature)
 ! "uw" (west-east component of wind)
 ! "vw" (south-north component of wind)
 ! "pvv" (pressure vertical velocity)
 ! "p" (pressure)
 ! "pmsl" (mean sea level pressure), and
 ! "vss" (vertical speed shear).

Table 4.1-1, cont.

June 2001

-18

Each of these eight grid variables has associated with it a levels dimension
according to how many levels the parent grid variable has. So:

 ! "gh" has five levels (850 mb, 700 mb, 500 mb, 300 mb, and 250 mb). So
its two companion attribute varaibles also have a vertical dimension of
five. Therefore the levels dimension “levels_5", which has a value of 5,
has been defined to serve as the vertical dimension of “gh” and its two
companion attribute varaibles.

 ! "t" has five levels (850 mb, 700 mb, 500 mb, 250 mb, and "TROP"). So its
two companion attribute varaibles also have a vertical dimension of five.
Therefore the levels dimension “levels_5", which has a value of 5, has
been defined to serve as the vertical dimension of “t” and its two
companion attribute varaibles.

 ! "uw" and "vw", each has eleven levels . So its two companion attribute
varaibles also have a vertical dimension of eleven. Therefore the levels
dimension “levels_11", which has a value of 11, has been defined to serve
as the vertical dimension of “uw” and “vw” and their two companion
attribute varaibles.

To finish this example quickly:

 ! "pvv": "levels_9", which has a value of 9.
 ! "p": "levels_2" (the two levels being “SFC” and "TROP"), which has a

value of 2.
 ! "pmsl": "levels_1" (the one level being "MSL"), which has a value of 1.
 ! "vss": "levels_1" (the one level being "TROP"), which has a value of 1.

So the netCDF grid file for the hemispheric AVN model has five levels
dimensions: "levels_1", “levels_2", "levels_5", "levels_9", and "levels_11".

4.2.2.2.3 Variables, with their Dimensions and Attributes.

The variables in netCDF grid files can be divided into two groups:

 ! grid variables with their companion attribute variables, and
 ! variables specifying characteristics of a model run and scale as a whole,

applicable to all grid variables within the file.

We will examine these two groups separately.

4.2.2.2.3.1 Grid Variables with their Companion Attribute Variables.

There are two "special" values that must be watched for when using gridpoint
data: the "fill value" and the value representing "not defined".

 ! When space for a grid is created in the netCDF grid file, it is
initialized to the "fill value" before any actual data are stored in it.
If the grid is missing, then its space in the netCDF grid file will
remain filled with the "fill value". When a grid is read in from the
netCDF grid file, it will be either entirely filled with the "fill
value", or no gridpoints at all will be filled with the "fill value". So
if one point's value is equal to the "fill value", then the entire grid
is missing. Therefore, after reading a grid in from a netCDF grid file,
it is recommended that the programmer check any one gridpoint for the

Table 4.1-1, cont.

June 2001

-19

"fill value" before attempting to use the grid. The value of the "fill
value" is found in "_FillValue", one of the attributes of the grid. See
also the description of the "_FillValue" attribute below.

 ! Sometimes, an individual gridpoint's value is "not defined". An example
of this is an isentropic surface gridpoint located where the isentropic
surface is below ground. In AWIPS, a gridpoint whose value is "not
defined" is assigned the value 1.0e+37. Because such numbers may not
have an exact representation in a computer's floating point
representation, programmers should allow some "pad" when checking for
"not defined" gridpoint values. It is therefore recommended that the
programmer use a gridpoint's value only if it is less than 1.0e+36.

Each of the grid variables (the number of them is the same as the size of the
dimension named "data_variables") is a 4-dimensional "variable". The 4
dimensions are (in order):

 ! "record" (this is the time dimension)
 ! one of the levels dimensions (this is the vertical dimension)
 ! "y" (this is the south-to-north dimension), and
 ! "x" (this is the west-to-east dimension).

Each grid variable has six attributes and two companion attribute variables.
The attributes are as follows:

 ! "long_name": a variable-length string containing a "spelled out" name of
the meteorological variable stored in the grid.

 ! "units": a variable-length string specifying the units of the data
stored in the grid.

 ! "valid_range": two float values giving the minimum and maximum values
that the grid values can have.

 ! "_FillValue": a floating point number giving the value used to signify
the entire grid is missing. For the MM5 model grids, this attribute's
value is -99999.0 for some grid variables, and 9.9999999E+36 for the
remaining grid variables. For all other models, this attribute's value
is always -99999.0.

 ! "_n3d": a long integer value giving the number of 2-dimensional slabs
that should be read to get a 3-dimensional description of the
meteorological variable stored in the grid.

 ! "levels": a variable-length string containing a list of the vertical
levels of the grid. It must be parsed to be correctly understood.

The first companion attribute variable is a variable-length list of the parent
grid's vertical level values. This variable shall henceforth be called the
companion levels variable. Each vertical level value is a variable-length
string (the length of the string is fixed within a given netCDF grid file, but
varies from one netCDF grid file to another). The name of this variable is of
the form:

<parent_grid_variable_name>Levels

For example, if the parent grid variable is "av" (for "absolute vorticity"),
then the name of the companion levels variable is "avLevels". Companion
levels variables have two dimensions:

Table 4.1-1, cont.

June 2001

-20

 ! a levels dimension - corresponds to the parent grid's vertical levels.
This levels dimension is the same levels dimension associated with the
parent grid variable.

 ! "charsPerLevel" - the length of the strings used to represent the
vertical level values.

Companion levels variables have no attributes.

Companion levels variables are best thought of as a list or set of vertical
level values concatenated together into one long string. The number of
vertical level values is equal to the value of the levels dimension. Each of
the vertical level values is expressed as a string whose length is equal to
the value of the "charsPerLevel" dimension. The vertical level values must be
parsed to be correctly understood. Let's look at an example. One of the grid
variables in the hemispheric scale AVN model is "vw" (the "v" or south-to-
north component of the wind). Its companion levels variable is called
"vwLevels", and its two dimensions are "levels_11" and "charsPerLevel". The
value of "levels_11" is 11; the value of "charsPerLevel" is 8. So "vw" can be
treated as a 88-character string constructed by concatenating together eleven
vertical level values, each expressed as an 8-character string. The eleven
vertical level values are:

"MB 1000 " = 1000 millibar level
"MB 850 " = 850 millibar level
"MB 700 " = 700 millibar level
"MB 500 " = 500 millibar level
"MB 400 " = 400 millibar level
"MB 300 " = 300 millibar level
"MB 250 " = 250 millibar level
"MB 200 " = 200 millibar level
"MB 150 " = 150 millibar level
"MB 100 " = 100 millibar level
"TROP " = tropopause.

So the 88-character string value of "vw" is "MB 1000 MB 850 MB 700 MB 500
MB 400 MB 300 MB 250 MB 200 MB 150 MB 100 TROP ".

The second companion attribute variable is an inventory indicating which valid
times and vertical levels of the parent grid variable actually contain data,
and which are missing. This variable shall henceforth be known as the
companion inventory variable. The name of this variable is of the form:

<parent_grid_variable_name>Inventory

For example, if the parent grid variable is "av" (for "absolute vorticity"),
then the name of the companion inventory variable is "avInventory". Companion
inventory variables have two dimensions:

 ! "n_valtimes" - corresponds to the valid times of the parent grid.
 ! a levels dimension - corresponds to the parent grid's vertical levels.

This levels dimension is the same levels dimension associated with the
companion levels variable and the parent grid variable.

Companion inventory variables have no attributes.

Table 4.1-1, cont.

June 2001

-21

Companion inventory variables are best thought of as a two-dimensional array,
with rows (the first subscript) corresponding to valid times, and columns
corresponding to vertical levels. Consider as an example the AVN model "t"
(for "temperature") grid variable. Its companion inventory variable
("tInventory") has 11 rows or valid times (the "n_valtimes" dimension has a
value of 13), and 5 columns or vertical levels (its levels dimension is
"levels_5", which has a value of 5). If programming in C or C++ (remember,
subscripts in C and C++ start with 0, not 1), tInventory(2,0) indicates
whether or not "t" contains actual data for the third valid time (the 12 hour
forecast) and the first vertical level ("MB 850 ", meaning the 850 millibar
level).

Formally, companion inventory variables are declared to contain NC_CHAR
(character) data, but in practice, the values in this variable are treated as
byte-sized integers. A non-zero value (usually 1) indicates the parent grid
variable contains actual data for the value's valid time and vertical level,
while a zero value indicates the corresponding valid time and vertical level
in the parent grid variable are missing. So, for example (if programming in C
or C++), tInventory(2,0) = 1 indicates that the temperature grid variable has
actual data for the 850 millibar 12 hour forecast, while tInventory(9,4) = 0
indicates that the 60 hour tropopause temperature forecast is missing.

4.2.2.2.3.2 Variables Representing Overall File Characteristics

AWIPS netCDF grid files contain the following eight variables used to
characterize the file (the model run and scale):

1) "valtimeMINUSreftime" = a one-dimensional array of valid times in seconds
since the reference time (see the discussion of the variable "reftime" in
this section). Values of this variable are of type NC_LONG (long int).
This variable has one dimension ("n_valtimes") and one attribute. The
attribute is a 7-character string called "units", and has the value
"seconds".

2) "valtime" = a one-dimensional array of valid times in seconds since 00Z
on January 01, 1970. Values of this variable are of type NC_DOUBLE
(double). This variable has one dimension ("record") and two attributes.
The first attribute is a 10-character string called "long_name", and has
the value "valid time". The second attribute is a 35-character string
called "units", and has the value "seconds since (1970-1-1 00:00:00.0)".

3) "reftime" = a one-dimensional array of reference times (model run times)
in seconds since 00Z on January 01, 1970. Values of this variable are of
type NC_DOUBLE (double). This variable has one dimension ("record") and
two attributes. The first attribute is a 14-character string called
"long_name", and has the value "reference time". The second attribute is
a 35-character string called "units", and has the value "seconds since
(1970-1-1 00:00:00.0)".

4) "origin" = the name of the person(s) or organization that produced the
model run. The value of this variable is of type NC_CHAR (character or
string). This variable has one dimension ("namelen") and no attributes.
An example value of "origin" (with trailing spaces trimmed off) is
"NCEP". (This really should be a global attribute, not a variable.)

5) "model" = the name of the numerical model that produced the grid
variables in this file. The value of this variable is of type NC_CHAR
(character or string). This variable has one dimension ("namelen") and

Table 4.1-1, cont.

June 2001

-22

The files described in this section are part of the AWIPS source tree and
will not be available at field sites. However, the information in the
described files is listed in Appendix 2.

no attributes. Example values of "model" (with trailing spaces trimmed
off) are "126 wave triangular, 18 layer spectral aviation run" and
"Nested Grid Model". (This really should be a global attribute, not a
variable.)

6) “staticTopo” = a two-dimensional grid of float values giving the height
of the model’s surface in meters above mean sea level at each grid point.
This variable has two dimensions (“y” and “x”) and three attributes. The
first attribute is a 6-character string called “units”, and has the value
“meters”. The second attribute is a 10-character string called
“long_name”, and has the value “Topography”. The third attribute is
called “_FillValue”. Its value is a floating point number giving the
value used to signify the entire grid is missing. This attribute's value
is always -99999.0.

7) “staticCoriolis” = a two-dimensional grid of float values giving the
value of the Coliolis parameter f. Now f = 2 * Ω * sin (φ), where Ω
is the earth’s rotation rate (2π radians per day, 1 day = 86400 seconds),
and φ is the latitude. So f = (2.0 * 2π * sin (latitude) / 86400.0) in
(seconds^-1) at each grid point. This variable has two dimensions (“y”
and “x”) and three attributes. The first attribute is a 7-character
string called “units”, and has the value “/second”. The second attribute
is a 18-character string called “long_name”, and has the value “Coriolis
parameter”. The third attribute is called “_FillValue”. Its value is a
floating point number giving the value used to signify the entire grid is
missing. This attribute's value is always -99999.0.

8) “staticSpacing” = a two-dimensional grid of float values giving the
distance (in meters) between 2 adjacent grid points. This variable has
two dimensions (“y” and “x”) and three attributes. The first attribute
is a 6-character string called “units”, and has the value “meters”. The
second attribute is a 12-character string called “long_name”, and has the
value “Grid spacing”. The third attribute is called “_FillValue”. Its
value is a floating point number giving the value used to signify the
entire grid is missing. This attribute's value is always -99999.0.

4.2.2.3 Other supporting files

There are two viewable-with-system-editors data files of interest when reading
grids from AWIPS netCDF grid files: "gridSourceTable.txt" and
"virtualFieldTable.txt". The file "gridSourceTable.txt" contains, in the
tenth field (called "name") of each logical record, the valid values for the
"sourceId" calling argument to three of the APIs described in the next
section. The structure and contents of the records of this file is described
by comments at the top of the file. The file "virtualFieldTable.txt" contains
in the first field of each logical record the valid values to the API
"getGridSliceAccessKey", also described in the next section. The structure
and contents of the records of this file are described in the file
"README.GRIDS".

Table 4.1-1, cont.

June 2001

-23

None of the following will be able to be implemented by the field without
access to the C++ compiler used to build the baseline code. However, a
“Grid Server” is expected to be in place during Build 5, which will allow
language-independent access to AWIPS netCDF grids without the need for
access to the AWIPS source code or libraries.

In addition to the above two files, the "cdl" (Common Data form Language)
files may provide helpful information. "cdl" files are used to define the
structure and contents of netCDF files. They are human-readable (and
editable) using any text editor. D2D creates a netCDF grid file by running
"ncgen" on the appropriate "cdl" file. The "cdl" files for AWIPS netCDF grid
files are well documented with internal comments. For more information on
"cdl" files and the “ncgen” program, see the "NetCDF User's Guide".

Additional documentation and information may be found in “gridTables.doc”,
“maksuparg.doc”, and “styleRules.doc”. These files are located in directory
“$FXA_HOME/data/localization/documentation”. They are html documents, best
viewed using the Netscape browser.

4.2.2.4 Existing software (APIs) for reading netCDF grid files

APIs for accessing AWIPS netCDF grid files and information about the grids are
found in:

$FXA_HOME/src/dataMgmt/GridSliceWrapper.h

FORTRAN callers need not include anything to use the APIs defined in the above
named file, but may view the file to see the function names and calling
sequences.

There are several C-language APIs of interest in "GridSliceWrapper.h".
Discussed here are one API to provide lists of IDs for what’s available, three
APIs for accessing grids, three APIs for accessing information about grids,
and one API for getting the path (directory + file name) of the netCDF file in
which grids of interest are stored.

The first API of interest is “gridSliceLists”:
void gridSliceLists (

char ***sourceIds , /* output */
int *nSources , /* output */
char ***fieldIds , /* output */
char ***descriptions , /* output */
int *nFields , /* output */
char ***planeIds , /* output */
int *nPlanes) /* output */

This function constructs and returns lists (arrays) of valid "sourceId",
"fieldId", and "planeId" values for the three input calling arguments to
"getGridSliceAccessKey" discussed earlier. The calling arguments for
"gridSliceLists" are as follows:

Table 4.1-1, cont.

June 2001

-24

"descriptions" is (a pointer to) an array of string (char *) descriptions of
each of the "fieldId" values returned in "fieldIds".

"fieldIds" is (a pointer to) an array of valid string (char *) values for
the "fieldId" calling argument of function "getGridSliceAccessKey".

"nFields" is (a pointer to) the number of "fieldId" values in "fieldIds".

"nPlanes" is (a pointer to) the number of "planeId" values in "planeIds".

"nSources" is (a pointer to) the number of "sourceId" values in "sourceIds".

"planeIds" is (a pointer to) an array of valid string (char *) values for
the "planeId" calling argument of function "getGridSliceAccessKey".

"sourceIds" is (a pointer to) an array of valid string (char *) values for
the "sourceId" calling argument of function "getGridSliceAccessKey".

The function "gridSliceIdLists" will allocate memory space for "descriptions",
"fieldIds", "planeIds", and "sourceIds"; you must free the memory space when
you are done with it.

The three functions for accessing grids are:

unsigned long getGridSliceAccessKey (
char *sourceId , /* input */
char *fieldId , /* input */
char *planeId) /* input */

void gridSliceInventory (
unsigned long key , /* input */
long **refTimes , /* output */
long **fcstTimes , /* output */
int *nTimes) /* output */

void gridSliceAccess (
unsigned long key , /* input */
long refTime , /* input */
long fcstTime , /* input */
float **data , /* output */
float **data2 , /* output */
int *nx , /* output */
int *ny , /* output */
int *nz , /* output */
float **levelValues) /* output */

To use these APIs, you generally will first call "getGridSliceAccessKey" to
get D2D's key for the combination of model, projection, scale, level, and
field you desire. If you want the surface grid and all available isobaric
levels for the desired field, pass in a NULL pointer for the calling argument
"planeID". The D2D key for the desired grid(s) is returned as the function's
value.

Table 4.1-1, cont.

June 2001

-25

Generally, you will next call "gridSliceInventory" to get lists (arrays) of
the reference times and forecast times for which the desired combination of
model, projection, scale, level, and field is available. Use the key returned
by "getGridSliceAccessKey" to specify the desired combination of model,
projection, scale, level, and field. The function "gridSliceInventory" will
allocate (malloc) the memory space for the two arrays, but it is the caller's
responsibility to free the memory space when it is finished with the arrays.
The number of reference and forecast times (the dimension of the two arrays)
is returned in the calling argument "nTimes".

Now, call "gridSliceAccess" to get the desired grid(s). Use the key returned
by "getGridSliceAccessKey" to specify the desired combination of model,
projection, scale, level, and field. Use one of the reference times and one
of the forecast times returned by "gridSliceInventory" to specify the
reference time and forecast time for the desired grid(s). Call
"gridSliceAccess" once for each combination of reference time, forecast time,
and grid key. What "gridSliceAccess" returns depends on the "planeId" given
to "getGridSliceAccessKey" and the rank (number of dimensions) of the desired
field:

- If "planeId" was not a NULL pointer, and the desired field is scalar,
"gridSliceAccess" will return NULL pointers for "data2" and
"levelValues", zero for nz, (a pointer to the address of) the desired
grid in "data", and (pointers to) the dimensions of the requested grid in
"nx" and "ny".

- If "planeId" was not a NULL pointer, and the desired field is a two-
component vector, "gridSliceAccess" will return a NULL pointer for
"levelValues", zero for nz, (a pointer to the address of) the desired
grid for the first (i) component of the desired field in "data", (a
pointer to the address of) the desired grid for the second (j) component
of the desired field in "data2", and (pointers to) the dimensions of the
requested grid pair in "nx" and "ny".

- If "planeId" was a NULL pointer, and the desired field is scalar,
"gridSliceAccess" will return a NULL pointer for "data2", (a pointer to
the address of) all available isobaric grids and the surface grid for the
desired field in "data", (a pointer to the address of) the array of the
level values for the returned grids in "levelValues", (a pointer to) the
number of returned grids (and level values) in "nz", and (pointers to)
the dimensions of the returned grids in "nx" and "ny".

- If "planeId" was a NULL pointer, and the desired field is a two-component
vector, "gridSliceAccess" will return (a pointer to the address of) all
available isobaric grids and the surface grid for the first (i) component
of the desired field in "data", (a pointer to the address of) all
available isobaric grids and the surface grid for the second (j)
component of the desired field in "data2", (a pointer to the address of)
the array of the level values for the returned grids in "levelValues", (a
pointer to) the number of returned level values in "nz", and (pointers
to) the dimensions of the returned grids in "nx" and "ny".

Table 4.1-1, cont.

June 2001

-26

The function "gridSliceAccess" will allocate (malloc) memory for "data",
"data2", and "levelValues". It is the calling routine's responsibility to
free this memory space when finished with it.

As was noted earlier in this section, the programmer should:

- use a grid only if is not missing, that is, if it is not filled with the
"fill value" (usually -99999); and

- use a gridpoint value only if it defined, that is, only if the value is
less than 1.0e+36.

These caveats apply to the grids "data" and "data2", and to the gridpoint
values in them.

Following are descriptions of the calling arguments for the above three APIs:

"data" is (a pointer to the address of) the array in which the requested
grid(s) is (are) returned. If the requested field is a two-component
vector (such as wind), the first (i) component will be returned in this
variable, and the second (j) component will be returned in "data2".

"data2" is (a pointer to the address of) the array in which the second (j)
component of a two-component vector (such as wind) will be returned. If
the requested field is scalar, a NULL pointer will be returned for this
variable.

"fcstTime" is the number of seconds after "refTime" at which the requested
grid(s) is (are) valid. For example, if the requested grid(s) is (are)
valid three hours after "refTime", "fcstTime" should be 10800.

"fcstTimes" is (a pointer to the address of) the array of forecast times
available for the requested model and scale.

"fieldId" is (a pointer to) the name of the desired field (meteorological
variable). Examples include "msl-P", "PoT", and "qVec". A current list
of valid “fieldId” values can be obtained by running program
testGridKeyServer with a command line argument of “v” (just enter
“$FXA_HOME/bin/testGridKeyServer v” at the Unix command prompt), or by
writing a short driver (main program) to call "gridSliceIdLists"
(described below) and then print out the "fieldIds" and "descriptions"
arrays it returns. Either way, a considerable amount of output may be
generated, so it is recommended you re-direct the output to a file, and
then print the file or view it with an editor. A few sample output lines
from a “$FXA_HOME/bin/testGridKeyServer v” run may be viewed in Appendix
2, Exhibit A2-1.

"key" is D2D's internal long integer identification number for the desired
model-scale-level-field combination. The only things you do with this
variable (returned to you by "getGridSliceAccessKey") is pass it on to
"gridSliceInventory" and "gridSliceAccess".

"levelValues" is (a pointer to the address of) the array of level values for
the grid(s) returned to you by "gridSliceAccess".

Table 4.1-1, cont.

June 2001

-27

"nTimes" is (a pointer to) the number of times returned in each of
"refTimes" and "fcstTimes".

"nx" is the number of gridpoints in the x (west-to-east) dimension.

"ny" is the number of gridpoints in the y (south-to-north) dimension.

"nz" is the number of vertical level values returned in "levelValues". It
is also the number of grids returned in "data" (and in "data2" if the
requested field is a two-component vector).

"planeId" is (a pointer to) the name of the desired combination of level
type and level value. Examples include "400MB", "Trop", "315K", and
"1000MB-500MB". Note: if "planeID" is NULL, "gridSliceAccess" will return
grids for the desired field for the surface and all available isobaric
levels. A current list of valid “planeId” values can be obtained by running
program "testGridKeyServer" with a command line argument of “p” (just type
"$FXA_HOME/bin/testGridKeyServer p" at the Unix command prompt), or by
writing a short driver (main program) to call "gridSliceIdLists" (described
below) and then print out the "planeIds" array it returns. Either way, a
considerable amount of output may be generated, so it is recommended you re-
direct the output to a file, and then print the file or view it with an
editor. A few sample lines from a “$FXA_HOME/bin/testGridKeyServer p" run
may be viewed in Appendix 2, Exhibit A2-2.

"refTime" is the runtime (in seconds since 0Z, January 01, 1970) of the
requested grid(s).

"refTimes" is (a pointer to the address of) the array of runtimes (in
seconds since 0Z, January 01, 1970) available for the requested model and
scale.

"sourceId" is (a pointer to) a string specifying a combination of model,
projection, and scale. Examples include "avnNH", "mesoEta212", and
"NGM202". A current list of “sourceId” values can be obtained by running
program testGridKeyServer with a command line argument of “s” (just enter
“$FXA_HOME/bin/testGridKeyServer s” at the Unix command prompt), or by
writing a short driver (main program) to call "gridSliceIdLists"
(described below) and then print out the "sourceIds" array it returns.
Either way, a considerable amount of output may be generated, so it is
recommended you re-direct the output to a file, and then print the file
or view it with an editor. A few sample output lines from a
“$FXA_HOME/bin/testGridKeyServer s” run may be viewed in Appendix 2,
Exhibit A2-3.

The three APIs for accessing information about grids are:

void getTextualUnits (
unsigned long key , /* input */
char **units) /* output */

void gridSliceGeoInfo (
unsigned long key , /* input */
char **geoFile , /* output */

Table 4.1-1, cont.

June 2001

-28

int *nx , /* output */
int *ny) /* output */

void interpretGeoInfo (
char *geoFile , /* input */
int nx , /* input */
int ny , /* input */
float *latLL , /* output */
float *lonLL , /* output */
float *latLR , /* output */
float *lonLR , /* output */
float *latUL , /* output */
float *lonUL , /* output */
float *latUR , /* output */
float *lonUR , /* output */
int *projIndex , /* output */
float *centralLat , /* output */
float *centralLon , /* output */
float *rotation , /* output */
float *dx , /* output */
float *dy , /* output */
float *latDxDy , /* output */
float *lonDxDy) /* output */

The “getTextualUnits” API provides the textual representation of units for a
grid specified by the calling argument “key”. For the “key” value, use the
value returned by “getGridSliceAccessKey”. The units are read from the
virtual field table, not the netCDF grid file. The units string is returned
as a NULL pointer if no units information is available for the grid of
interest, and as an empty string if the grid of interest is dimensionless.
This function will allocate the memory space for the “units” value, but it is
the caller’s responsibility to free the memory space when done.

The “gridSliceGeoInfo” API provides the name of the geo file (also called the
depictor file) needed to get a grid’s navigation parameters. The dimensions
of the grid are also returned. The grid is specified by the calling argument
“key”, which is also the value returned by “getGridSliceAccessKey”. The file
name returned has neither directory nor the “.sup” extension. This function
will allocate the memory space for the “geoFile” value, but it is the caller’s
responsibility to free the memory space when done.

The “interpretGeoInfo” API provides sixteen grid navigation parameters for a
grid. The grid is specified by the calling arguments “geoFile”, “nx”, and
“ny” which were returned by “gridSliceGeoInfo”. The sixteen navigation
parameters are defined in the next paragraph.

Following are descriptions of the calling arguments for the above three APIs:

“centralLat” is the tangent latitude (in degrees north) of the projection.

“centralLon” is the tangent longitude (in degrees east) of the projection.

“dx” is the approximate x direction grid spacing in kilometers.

Table 4.1-1, cont.

June 2001

-29

“dy” is the approximate y direction grid spacing in kilometers.

“geoFile” is the name of the geographic information file (also called the
depictor file).

“key” is D2D’s internal long integer identification number for the desired
model-scale-level-field combination. For this calling argument, use the
value returned by “getGridSliceAccessKey”.

“latDxDy” is the latitude (in degrees north) where dx and dy are valid.

“latLL” is the latitude (in degrees north) of the lower left (south west)
corner of the grid.

“latLR” is the latitude (in degrees north) of the lower right (south east)
corner of the grid.

“latUL” is the latitude (in degrees north) of the upper left (north west)
corner of the grid.

“latUR” is the latitude (in degrees north) of the upper right (north east)
corner of the grid.

“lonDxDy” is the longitude (in degrees east) where dx and dy are valid.

“lonLL” is the longitude (in degrees east) of the lower left (south west)
corner of the grid.

“lonLR” is the longitude (in degrees east) of the lower right (south east)
corner of the grid.

“lonUL” is the longitude (in degrees east) of the upper left (north west)
corner of the grid.

“lonUR” is the longitude (in degrees east) of the upper right (north east)
corner of the grid.

“nx” is the x or left-right (west-east) dimension of the grid.

“ny” is the y or bottom-top (south-north) dimension of the grid.

“projIndex” is the AWIPS projection index.

“rotation” is the angle (in degrees) of the grid’s positive y-axis with
respect to the centralLon meridian.

“units” is the text units read from the virtual field table.

The API to get the path (directory + file name) of the netCDF file in which
grids of interest are stored is:

void getGridfilePath (
char *sourceId , /* input */
long refTime , /* input */

Table 4.1-1, cont.

June 2001

-30

char **pathName) /* output */

Following are descriptions of the calling arguments for this API:

“pathName” is (a pointer to) a string containing the full path (directory +
file name) in which the grids of interest are stored.

"refTime" is the runtime (in seconds since 0Z, January 01, 1970) of the
grid(s) of interest.

"sourceId" is (a pointer to) a string specifying a combination of model,
projection, and scale. Examples include "avnNH", "mesoEta212", and
"NGM202". A current list of “sourceId” values can be obtained by running
program testGridKeyServer with a command line argument of “s” (just enter
“$FXA_HOME/bin/testGridKeyServer s” at the Unix command prompt), or by
writing a short driver (main program) to call "gridSliceIdLists"
(described below) and then print out the "sourceIds" array it returns.
Either way, a considerable amount of output may be generated, so it is
recommended you re-direct the output to a file, and then print the file
or view it with an editor. A few sample output lines from a
“$FXA_HOME/bin/testGridKeyServer s” run may be viewed in Appendix 2,
Exhibit A2-3.

The above APIs should provide all needed functionality for accessing grids in
the AWIPS netCDF files, and navigation information for those grids. But to
use those APIs, you must have the “cfront” C++ compiler. Most local
applications developers do not have such access. Therefore, the
Meteorological Development Lab (MDL) is supplying the following API in:

/awips/adapt/nav/inc/Navigation.h (when calling from C), or
/awips/adapt/nav/inc/Navigation.H (when calling from C++)

to provide all necessary grid navigation information:

void get_grid_nav (
const char *grid_source , /* input */
float *dx , /* output */
float *dy , /* output */
float *lat1 , /* output */
float *lat2 , /* output */
float *lon1 , /* output */
float *lon2 , /* output */
long *nx , /* output */
long *ny , /* output */
long *projection , /* output */
long *relativity , /* output */
float *stdlat1 , /* output */
float *angle2 , /* output */
float *truelat , /* output */
float *align , /* output */
long *status); /* output */

Table 4.1-1, cont.

June 2001

-31

FORTRAN callers need not INCLUDE anything to use this API, but may view the
above named files to see the function names and calling sequences. Both of
the include files named above require six other include files:
 hmHMC_fileUtils.h
 hmHMC_interpUtils.h
 hmHMC_parseNum.h
 hmHMU_STATUS.h
 hmHMU_destroyObject.h
 hmHMU_stringUtils.h
either directly or indirectly. These may be obtained from the MDL web site by
doing the following:
1.First bring up the MDL home page (see section 7, “OnLine Resources and

URLs”, for the URL);
2.From there, click on the “AWIPS LOCAL APPLICATIONS SUPPORT” link to bring up

the “AWIPS LOCAL APPLICATIONS DEVELOPMENT” page;
3.From there, click on the “DOWNLOAD/UPLOAD” link to bring up the “Available

Files to Download” page;
4.From there, click on the “C++ Navigation Routines” choice, which will ftp

the above six include files (and a few other files as well) to you.

All (C++, C, and FORTRAN) callers must link to

/awips/adapt/nav/lib/libNavigation.a

when building their executables. This API searches the navigation file (an
ASCII flat file called "Navigation.txt") for the navigational information for
the combination of forecast model, map projection, and geographic area of
coverage specified by the calling argument "grid_source", and returns that
information to the caller. The file "Navigation.txt" is stored in a directory
named by the UNIX environment variable "NAVFILE_DIR". The software reads
"NAVFILE_DIR" to find and open "Navigation.txt". Therefore, "NAVFILE_DIR"
must be correctly set to the complete, absolute directory of "Navigation.txt"
before "get_grid_nav" can be used. If "NAVFILE_DIR" is incorrectly set, or
cannot be found, "get_grid_nav" will abort. The currently correct setting for
"NAVFILE_DIR" is "/awips/adapt/nav/data/".

The calling arguments for "get_grid_nav", in alphabetical order, are as
follows:

"align" = (a pointer to)
 (a) for polar stereographic and Lambert conformal projections, the

vertical longitude; the east longitude (in degrees) parallel to the
map projection's positive y axis.

 (b) for local stereographic, the rotation angle of the positive y axis in
degrees clockwise from north.

"angle2" = (a pointer to)
 (a) for a tangent cone projection, same as stdlat1.
 (b) for a secant cone projection, the second (furthest from pole) latitude

(in degrees north) at which the secant cone cuts the earth.
 (c) for a stereographic projection, the longitude (in degrees east) of the

center of the projection. A value of +/-90 indicates polar
stereographic.

Table 4.1-1, cont.

June 2001

-32

"dx" = (a pointer to) the left-right (west-east) grid spacing (in meters) at
the latitude "truelat".

"dy" = (a pointer to) the bottom-top (south-north) grid spacing (in meters)
at the latitude "truelat".

"grid_source" = (a pointer to) a string specifying the combination of model,
map projection, and geographic scale of the grid for which navigational
information is wanted. Examples include "avnNH", "mesoEta212", and
"NGM202". A current list of “grid_source” values can be obtained by
running program testGridKeyServer with a command line argument of “s”
(just enter “$FXA_HOME/bin/testGridKeyServer s” at the Unix command
prompt), or by writing a short driver (main program) to call
"gridSliceIdLists" (described below) and then print out the "sourceIds"
array it returns. Either way, a considerable amount of output may be
generated, so it is recommended you re-direct the output to a file, and
then print the file or view it with an editor. A few sample output lines
from a “$FXA_HOME/bin/testGridKeyServer s” run may be viewed in Appendix
2, Exhibit A2-3. "grid_source" must be a C-language style string, that
is, the character immediately following the last (rightmost) printable
character of the string must be CHAR(0) in FORTRAN, or NULL (= (char) 0)
in C and C++.

"lat1" = (a pointer to) the north latitude (in degrees) of the first or
lower left gridpoint.

"lat2" = (a pointer to) the north latitude (in degrees) of the last or upper
right gridpoint.

"lon1" = (a pointer to) the east longitude (in degrees) of the first or
lower left gridpoint.

"lon2" = (a pointer to) the east longitude (in degrees) of the last or upper
right gridpoint.

"nx" = (a pointer to) the number of gridpoints along a row (the
right-to-left or west-to-east edges) of the grid.

"ny" = (a pointer to) the number of gridpoints along a column (the
bottom-to-top or south-to-north edges) of the grid.

"projection" = (a pointer to) the integer GRIB code for the map projection:

1 = Mercator
3 = Lambert conformal
5 = stereographic.

Table 4.1-1, cont.

June 2001

-33

"relativity" = (a pointer to) an integer code for how vector components are
resolved:

0 = vector components are resolved relative to easterly and northerly
directions.

1 = vector components are resolved relative to the defined grid in the
direction of increasing x and y.

"status" = (a pointer to) get_grid_nav's return status. Possible values
are:

0 = The requested navigation data was successfully found, extracted,
and returned.

2 = The software did not recognize the input "grid_source" value.
6 = An attempt to allocate memory failed. Most likely, insufficient

memory was available.
7 = Most likely, the file "Navigation.txt" is corrupted.
8 = The file "Navigation.txt" could not be read. This is not

necessarily a problem with the file.
9 = Indicates an undefinable error, possibly a bug in the software.

"stdlat1" = (a pointer to):
 (a) for a tangent cone projection, the tangency latitude; the latitude (in

degrees north) at which the earth is tangent to the map projection.
 (b) for a secant cone projection, the first (closest to pole) latitude (in

degrees north) at which the secant cone cuts the earth.
 (c) for a stereographic projection, the latitude (in degrees north) of the

center of the projection.

“truelat" = (a pointer to) the north latitude (in degrees) at which the grid
spacing (dx and dy) is defined. For AWIPS projections, "truelat" =
"stdlat1".

Navigational information that is not applicable to the specified map
projection and geographic area of coverage is returned with the value -9999.0
for type "float", or -9999 for type "long".

This API is designed to be callable from C++, C, and FORTRAN. Simple examples
may be viewed in the Navigation man page or in the Navigation test drivers
(navtest.C for C++, navtest.c for C, and navtest.f for FORTRAN; note that
navtest.f will also need itlen.f). These may be obtained via the same
procedure given above for getting the six include files needed by Navigation.h
and Navigation.H.

4.2.2.5 Existing software (APIs) for writing netCDF grid files

Deferred.

Table 4.1-1, cont.

June 2001

-34

4.2.3 Point Data (Section/subsections current for Build 4.3)

All decoded point data are stored in files in subdirectories under the
$FXA_DATA/point directory. $FXA_DATA is currently /data/fxa, and this disk
partition is globally (NFS) mounted such that while the data only reside on a
particular machine (the ds), the directories can be “seen” from any machine
(ws3, as2, etc.) inside the AWIPS LAN, the same as if they were present on
that machine. This disk partition is also mirrored (redundantly maintained)
on both ds1 and ds2 for backup purposes, so that in case of failure of ds1,
AWIPS can failover to ds2 with little or no loss of critical data.

4.2.3.1 METAR Data

4.2.3.1.1 File naming conventions

The METAR data files are found under the $FXA_DATA/point/metar directory. The
/Raw/ subdirectory ($FXA_DATA/point/metar/Raw) holds the reports written
before decoding, and /Bad/ is where the reports that were not correctly
decoded are moved. The /netcdf/ subdirectory contains the netCDF format
storage files, and the binary plot storage files are kept in /plot/. A /tmp/
subdirectory (normally empty) also exists to hold incoming METAR data until
the message transmission is completed, at which time the data are transferred
to the /Raw/ subdirectory.

The convention for names of files in these directories is YYYYMMDD_hhmm, where
hhmm is the nominal time in UTC (i.e., Z), to the hour, of the start of the
data. For example, file “19970206_1600" contains the 16Z data for Feb 06,
1997. The METAR nominal time is such that each file holds 1 hour's worth of
reports, for report times from 15 minutes before the hour to 44 minutes after
the hour. For example, the 1200Z file contains METARs with reporting times
from 1145Z through 1244Z.

4.2.3.1.2 Organization of files

METAR data are stored in both binary and netCDF formats. The binary plotfiles
are utilized by D2D depictables for display purposes, while the netCDF files
are intended to be accessed by other applications. The raw data arrive in
text format as one singular report or as a collective report. The collective
report contains data from several stations. These data are ingested and
stored in the /Raw/ directory. As each report or collective is written to
disk, a notification is sent to the Comms Router which then notifies the Text
Controller, which then pings the METAR decoder that there are data to be
processed. The decoder will process every file in the directory, not just the
one for which it received a notification.

The raw METAR file is deleted once the report data are successfully decoded
and stored. If a decoding error occurred, then the raw file is moved to the
/Bad/ directory. The decoder then moves on to the next file in the /Raw/
directory. When it has finished processing all the current METAR files in the
/Raw/ directory, the decoder waits for the next notification to arrive. The
routine that writes the decoded METAR data to binary plot and netCDF files is
dmStoreMETAR_PlotInfo.C. It is called for every successfully decoded METAR.
For additional information on the decoding process, refer to Chapter 7 of the
WFO-Advanced Overview. The decoded METAR elements stored in binary plotfiles

Table 4.1-1, cont.

June 2001

-35

NOTE: Current plans are to discontinue use of plotfiles as a duplicate
manner of storage for METAR and other point data in the Build 5.x time
frame. Any code that is written to access decoded point data shall,
wherever possible, read only the netCDF data files.

and netCDF files, and their units and format, are shown in Tables 4.2.3.1.2-1
and 4.2.3.1.2-2, respectively.

Table 4.2.3.1.2-1. METAR data stored in a binary plotfile. Data types are C-
language types.

NAME

METAR BINARY PLOTFILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

stationID char of max length 5

timeObs seconds since 1-1-1970 double

reportType char of max length 6

skyCover char array of 6 by 5

skyLayerBase feet float array of 6

visibility statute miles float

presWeather char of max length 21

seaLevelPress millibars float

temperature degrees F float

dewpoint degrees F float

windDir tenths of degrees true float

windSpeed knots float

windGust knots float

precip1Hour millimeters float

precip3Hour millimeters float

pressChangeChar Pressure tendency change char. short

pressChange3Hour millibars short

Table 4.1-1, cont.

June 2001

1 Name is inconsistent with actual storage units.

-36

Table 4.2.3.1.2-2. METAR data stored in a netCDF file. The variables wmoID,
latitude, longitude, elevation and timeNominal do not appear in METARs, but
are derived from other sources. The length of the character strings
includes the null terminator: subtract 1 from the stated length to get the
maximum string length. Data types are C-language types.

NAME

METAR NETCDF FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

wmoID long

stationName char of max length 5
(4+1)

latitude decimal degrees, North float

longitude decimal degrees, East float

elevation meters float

timeObs METAR observation time,
seconds since 1-1-1970

double

timeNominal METAR nominal report hour,
seconds since 1-1-1970

double

reportType [METAR or SPECI] char of max length 6
(5+1)

autoStationType char of max length 6
(5+1)

skyCover [CLR, FEW, SCT, BKN, OVC, SKC] array of 6 char of max
length 8 (7+1)

skyLayerBase meters float array of 6

visibility meters float

presWeather using FMH-1 weather codes char of max length 25
(24+1)

seaLevelPress pascals float

temperature degrees Kelvin float

tempFromTenths1 temperature, in Kelvin float

dewpoint degrees Kelvin float

dpFromTenths1 dewpoint, in Kelvin float

Table 4.1-1, cont.

June 2001

NAME

METAR NETCDF FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

-37

windDir degrees true float

windSpeed meters/second float

windGust meters/second float

altimeter pascals float

minTemp24Hour in Kelvin float

maxTemp24Hour in Kelvin float

precip1Hour meters float

precip3Hour meters float

precip6Hour meters float

precip24Hour meters float

pressChangeChar pressure tendency change
character (FMH-1 Table 12-7)

short

pressChange3Hour pascals short

correction corrected METAR indicator:
1 = correction, 0 = original

long

rawMETAR raw coded METAR/SPECI text
message

char of max length 256
(255+1)

4.2.3.1.3 Supporting files

Static station information for METARs is found in the ASCII text file
/src/dataMgmt/metarStationInfo.txt, and includes the following:

number ID lat lon elev station name country MTR or SAO
(10) (5) (sn2.3) (sn3.3) (5) (36) (2) (3)
 (deg. N) (deg. E) (m)

The information in parentheses refers to the length and format of the entries.
This file is the source of the wmoId, latitude, longitude, and elevation data
values written to the METAR netCDF data file.

4.2.3.2 RAOB DATA

4.2.3.2.1 File naming conventions

Upper air data (Radiosonde Observations, commonly referred to as `RAOB') will
be written in both netCDF and plotfile formats. Only the plotfiles are used
in Build 4.3, with netCDF storage to be added in Build 5.0. RAOB data files

Table 4.1-1, cont.

June 2001

-38

will be stored in $FXA_DATA/point/raob/netcdf and $FXA_DATA/point/raob/plot
directories, respectively. The convention for names of files in these
directories is YYYYMMDD_TIME, where TIME is the UTC (i.e., Z) time of the
start of the data (e.g., 19970206_1200 contains the 12Z data for Feb 06,
1997). Each file holds 12 hours worth of data, so the 0000Z plotfile contains
all the RAOB data from 0000Z through 1159Z, and the 1200Z file contains 1200Z
through 2359Z data.

4.2.3.2.2 Organization of files

RAOB data are currently received through the SBN and temporarily stored on
disk as encoded BUFR messages in the /data/fxa/ispan/bufr/raob directory.
ASCII (text) RAOB data are no longer decoded in AWIPS, but Mandatory and
Significant Level RAOB text reports are stored in the text database (Sec.
4.2.7) under the product identifiers cccMANxxx and cccSGLxxx, respectively.
As data are received, the RaobBufrDecoder is notified to decode the message
and store it in the data files. As data become available for decoding,
RaobBufrDecoder reads and decodes the BUFR data file and stores the data in
the appropriate fields as a plotfile. As new data arrive, the decoder
determines whether the data are new, contain differences from earlier reports,
etc., and appends or merges them with the existing data for that particular
station and observation time. After the BUFR file is decoded and stored in
(netCDF and) plotfile formats, the decoder deletes the file from the
directory. Table 4.2.3.2.2-1 shows the RAOB data stored in the (netCDF files
and) plotfiles.

Table 4.2.3.2.2-1. RAOB data stored in (netCDF files and) binary plotfiles.
The length of the character strings includes the null terminator. The first
mandatory level is the surface level. Data types are C-language types.

NAME

RAOB BINARY PLOTFILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

wmoStaNum long

staName char array of 6 bytes

staLat station latitude, in degrees N float

staLon station longitude, in degrees E float

staElev meters float

synTime seconds since 1-1-1970 double

numMand number of mandatory levels -
maximum of 22

long

numSigT number of significant levels
with respect to (wrt)
Temperature - max 150

long

numSigW number of significant levels
wrt Wind - maximum of 76

long

Table 4.1-1, cont.

June 2001

NAME

RAOB BINARY PLOTFILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

-39

numMwnd number of maximum wind levels long

numTrop number of tropopause levels long

relTime Sounding Release time, in
seconds since 1-1-1970

double

sondTyp Instrument type long

prMan Pressure - Mandatory level, in
millibars

float array of 22

htMan Geopotential - Mandatory level,
in meters

float array of 22

tpMan Temperature - Mandatory level,
in Kelvins

float array of 22

tdMan Dew Point Depression -
Mandatory level, in Kelvins

float array of 22

wdMan Wind Direction - Mandatory
level, in degrees true

float array of 22

wsMan Wind Speed - Mandatory level in
meters/second

float array of 22

prSigT Pressure - Significant level
wrt Temperature, in millibars

float array of 150

tpSigT Temperature - Significant level
wrt Temperature, in Kelvin

float array of 150

tdSigT Dew Point Depression -
Significant level wrt
Temperature, in Kelvin

float array of 150

htSigW Geopotential - Significant
level wrt Wind, in meters

float array of 76

wdSigW Wind Direction - Significant
level wrt Wind, in degrees true

float array of 76

wsSigW Wind Speed - Significant level
wrt Wind, in meters/second

float array of 76

prTrop Pressure - Tropopause level, in
millibars

float array of 4

tpTrop Temperature - Tropopause level,
in Kelvins

float array of 4

tdTrop Dew Point Depression -
Tropopause level, in Kelvins

float array of 4

Table 4.1-1, cont.

June 2001

NAME

RAOB BINARY PLOTFILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

-40

wdTrop Wind Direction - Tropopause
level, in degrees true

float array of 4

wsTrop Wind Speed - Tropopause level,
in meters/second

float array of 4

prMaxW Pressure - Maximum wind level,
in millibars

float array of 4

wdMaxW Wind Direction - Maximum wind
level, in degrees true

float array of 4

wsMaxW Wind Speed - Maximum wind
level, in meters/second

float array of 4

4.2.3.2.3 Supporting files

RAOB id and location information is found in src/dataMgmt/raobStationInfo.txt,
and includes the following fields:

wmo number stn lat lon elev location or type
(10 digits) (5 char) (deg. N) (deg. E) (meters) (20 char) (2 char) (4 char)

The information in parentheses refers to the length and format of the entries.
The variable “or” refers to Country of Origin.

Examples are:

0000070026|BRW |71.30|-156.78| 12|BARROW/POST-ROGE, AK|US|RAOB
0000072357|OUN |35.23| -97.47| 362|NORMAN, OK |US|RAOB
0000072363|AMA |35.23|-101.70| 1094|AMARILLO ARPT, TX |US|RAOB
0000072364|EPZ |31.87|-106.70| 1252|SANTA TERESA, NM |US|RAOB

4.2.3.3 Lightning Data

4.2.3.3.1 File naming conventions

The lightning data files are found in $FXA_DATA/point/binLightning/. The plot
data files are stored in the /plot/ subdirectory, and the netcdf data files
are stored in the /netCDF/ subdirectory.

4.2.3.3.2 Organization of files

Lightning data collected by the National Lightning Detection Network (NLDN)
and are received on the SBN network in an encoded binary format. After the
lightning data are decoded they are stored in plotfiles and netCDF data files.

Table 4.1-1, cont.

June 2001

-41

The variables for the netCDF file and the plotfile are the same. The number
of records in the file is the number of lightning strikes. Lightning data in
the file are shown in Table 4.2.3.3.2-1.

Table 4.2.3.3.2-1. Lightning data stored in netCDF and binary plotfiles. All
data types are C-language types.

NAME UNITS / DESCRIPTION DATA TYPE

lat strike latitude, in degrees north float

lon strike longitude, in degrees east float

time time of strike, in seconds since 1-1-1970 double

sigStr normalized signal strength and polarity, in Kiloamps float

mult multiplicity of the flash long

4.2.3.3.3 Supporting files

None.

4.2.3.4 Wind Profiler Data

4.2.3.4.1 File naming conventions

The wind profiler data files are found in the $FXA_DATA/point/profiler/plot
(binary plotfiles), $FXA_DATA/point/profiler/netcdf (netCDF files) and
$FXA_DATA/point/profiler directories.

4.2.3.4.2 Organization of files

Wind profiler data elements in netCDF and plotfiles are identical. The
information is stored in wind profiler files is shown in Table 4.2.3.4.2-1.

Table 4.2.3.4.2-1. Wind profiler data stored in netCDF and binary plotfiles.
Data types are C-language types.

NAME

WIND PROFILER FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

wmoStaNum WMO numeric station ID long

staLat Station latitude, degrees N float

staLon Station longitude, degrees E float

staElev Elevation above MSL, in meters float

windSpeedSfc Surface wind speed, in
meters/second

float

Table 4.1-1, cont.

June 2001

NAME

WIND PROFILER FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

-42

windDirSfc Surface wind direction, in
degrees

long

pressure Pressure reduced to MSL, in hPa
(millibars)

float

temperature Surface temperature, in Kelvin float

rainRate Surface rainfall rate, in
kg/meter²/second (mm/sec)

float

relHumidity Surface relative humidity, in
percent

long

submode NOAA wind profiler submode
information, in code

long

staName Alphanumeric station name char array of length
6 (5+1)

timeObs Time of observation, in seconds
since 1-1-1970

double

levels Height above station, in meters float array of 43
levels

levelMode Wind profiler mode information long array of 43
levels

uvQualityCode NOAA wind profiler quality
control test results for u- and
v-components

long array of 43
levels

consensusNum Consensus number (hourly data
only)

long array of 43
levels

uComponent u (eastward) component, in
meters/second

float array of 43
levels

vComponent v (northward) component, in
meters/second

float array of 43
levels

HorizSpStdDev Horizontal wind speed standard
deviation, in meters/second

float array of 43
levels

peakPower Spectral peak power, in dB long array of 43
levels

wComponent w (upward) component, in
meters/second

float array of 43
levels

VertSpStdDev meters/second float array of 43
levels

Table 4.1-1, cont.

June 2001

-43

4.2.3.4.3 Supporting files

The following profiler info is found in src/dataMgmt/profilerStationInfo.txt:

 #name wmoID lat lon ht
(5 char) (5 digits) (deg. N) (deg. E) (meters)

The information in parentheses refers to the length and format of the entries.

Examples are:

RWDN1|74433|40.08|-100.65| 800
LTHM7|74551|39.57| -94.18| 297
TCUN5|74731|35.08|-103.60|1241

4.2.3.5 Marine Report Data

Decoded marine reports of various types are stored together in a single type
of netCDF file. Currently, C-MAN, ship, and fixed and drifting buoy reports
that are available from the SBN data feed are decoded and stored in the hourly
marine netCDF files.

4.2.3.5.1 File naming conventions

The marine report data files are found in the $FXA_DATA/point/maritime/netcdf
directory. The convention for names of files in these directories is
YYYYMMDD_hhmm, where hhmm is the nominal time in UTC (i.e., Z), to the hour,
of the start of the data. For example, file “19970206_1600" contains the 16Z
data for Feb 06, 1997. Like METARs, the marine reports nominal time is such
that each file holds 1 hour's worth of reports, for report times from 15
minutes before the hour to 44 minutes after the hour.

4.2.3.5.2 Organization of files

Decoded marine data elements for all marine platforms (land, ship, buoy; fixed
and moving) are stored in hourly netCDF files. There is no corresponding
marine reports plotfile after Build 4.1. The information stored is as defined
in Table 4.2.3.5.2-1.

Table 4.2.3.5.2-1. Marine report data stored in netCDF files. Data types are
C-language types.

NAME

MARINE NETCDF FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

stationName Station, Buoy, or Ship call letters char of max
length 9 (8+1)

latitude decimal degrees, positive North float

longitude decimal degrees, positive East float

Table 4.1-1, cont.

June 2001

NAME

MARINE NETCDF FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

-44

elevation station height above MSL, meters float

timeObs date/time of observation, seconds
since 1-1-1970 (unix ticks)

double

timeNominal nominal date/hour of data in file,
seconds since 1-1-1970 (unix ticks)

double

dataPlatformType 0 = stationary (moored buoy, CMAN)
1 = moving (drifting buoy or ship)

short

temperature air temperature, kelvin float

dewpoint kelvin float

wetBulbTemperature kelvin float

seaLevelPress pascal float

pressChangeChar 3 Hour pressure change character short

pressChange3Hour pascal float

windDir degree float

windSpeed meter/sec float

windGust meter/sec float

visibility meter float

totalCloudCover Fraction of sky covered by clouds
tenths

float

cloudBaseHeight Height category of lowest cloud
layer:
 0 = "0 to 100 ft";
1 = "200 to 300 ft";
2 = "400 to 600 ft";
3 = "700 to 900 ft";
4 = "1000 to 1900 ft";
5 = "2000 to 3200 ft";
6 = "3300 to 4900 ft";
7 = "5000 to 6500 ft";
8 = "7000 to 8000 ft";
9 = "8500 or higher or no clouds";
-1 = "unknown or below sfc of stn";

short

presWeather Present Weather, FMH-1 char. codes char of max
length 26
(25+1)

Table 4.1-1, cont.

June 2001

NAME

MARINE NETCDF FILE VARIABLES

UNITS / DESCRIPTION DATA TYPE

-45

lowLevelCloudType Low level cloud type, FMH-2 table
(values 1-9), and 0 (no low clouds)
or -1 (obscured)

short

midLevelCloudType Middle level cloud type, FMH-2
table (values 1-9), and 0 (no
middle clouds) or -1 (obscured)

short

highLevelCloudType High level cloud type, FMH-2 table
(values 1-9), and 0 (no high
clouds) or -1 (obscured)

short

precip1Hour 1 Hour precipitation, meters float

precip6Hour 6 Hour precipitation, meters float

precip12Hour 12 Hour precipitation, meters float

precip18Hour 18 Hour precipitation, meters float

precip24Hour 24 Hour precipitation, meters float

platformTrueDirection Data platform true direction of
movement, degrees

float

platformTrueSpeed Data platform true speed of
movement, meter/sec

float

seaSurfaceTemp Sea surface temperature, kelvin float

wavePeriod Wave period, seconds float

waveHeight Wave height, meters float

highResWaveHeight High-resolution wave height, meters float

equivWindSpeed10m Equivalent wind speed at 10 meters float

equivWindSpeed20m Equivalent wind speed at 20 meters float

maxWindSpeedTime Time of observed maximum wind
speed, seconds since 1-1-1970 (unix
ticks)

double

maxWindSpeed Maximum wind speed, meters/sec float

maxWindDirection Wind direction for wind speed
maximum, degrees

float

rawMaritime Raw maritime ASCII message char of max
length 257
(256+1)

Table 4.1-1, cont.

June 2001

-46

4.2.3.5.3 Supporting files

The CDL file that defines the marine netCDF data file is located in the ASCII
file $FXA_HOME/data/maritime.cdl on the ds. The file maritimeStationInfo.txt,
in the same directory, defines the station ID (call letters), latitude,
longitude, elevation, full station name, country of origin, and report type
for the marine stations whose decoded and raw reports are contained in the
marine netCDF files. Included comment lines document the file contents. The
file maritimeWxCodes.txt, in the same directory, is a lookup table defining
the relationship between the FMH-2 numerical weather codes (e.g., 67) in the
encoded marine reports, and the FMH-1 character weather codes (e.g., FZRA)
stored in the marine netCDF file in the presWeather variable. The FMH-2
numerical codes are converted to FMH-1 character codes before storage in the
netCDF file to support weather symbol plotting in station model plots of
marine report data on the D2D display.

4.2.3.6 LDAD (Local Data Acquisition and Dissemination)

A full description of AWIPS data acquisition and storage under the LDAD
subsystem is beyond the current scope of this document. The reader is
referred to Chapter 8 of the AWIPS System Manager’s Manual for a description
and guide to local data acquisition via LDAD. The following sections will
describe the location and format of decoded data acquired via LDAD and stored
inside of AWIPS.

4.2.3.6.1 File naming conventions

Mesonet, cooperative observer, and other local (i.e., non-SBN and non-WAN)
observational data acquired via the LDAD subsystem are stored in one of three
types of LDAD netCDF data files after decoding and processing. The three
types of LDAD netCDF files are called hydro, mesonet, and manual, and consist
of hourly data files in the directories $FXA_DATA/LDAD/hydro/netCDF,
$FXA_DATA/LDAD/mesonet/netCDF, and $FXA_DATA/LDAD/manual/netCDF, respectively.
A matching /plot subdirectory may be found on AWIPS for each of the 3 file
types at the /netCDF level. This is a holdover from earlier designs.
Plotfiles are not implemented for LDAD data in Build 4.3, and no plans exist
to add them.

Each mesonet netCDF data file will have a companion file of original decoded
data, augmented with quality-control (QC) information and the results of MSAS
(MAPS Surface Analysis System) QC checks that have been performed on the data.
The QC’ed mesonet data are located under the $FXA_DATA/LDAD/mesonet/qc
directory. Hydro and manual LDAD data currently are not quality controlled
under MSAS.

The convention for names of files in the four LDAD netCDF data directories is
YYYYMMDD_hhmm, where hhmm is the nominal time in UTC (i.e., Z) time, to the
hour, of the start of the data. Each file holds 1 hour's worth of reports,
for report times occurring within the hour (i.e., for 0 minutes, 0 seconds to
59 minutes, 59 seconds after the given hour), as determined by the time stamp
within the report. In Build 4.3 installed configuration, the basic (temporal
and validity) QC results are updated every five minutes, beginning at three
minutes past the hour, only for the decoded observations received and stored
during the previous five minutes. The spatial QC check is performed only once

Table 4.1-1, cont.

June 2001

-47

per hourly file, at 18 minutes past the hour. Any observations received and
stored after 18 minutes past the hour will have no spatial QC check results in
the QC netCDF file, only basic QC results. See your System Administrator to
verify the current QC update schedules at your site.

4.2.3.6.2 Organization of files

The three tables that follow in this section describe the contents of the LDAD
hydro, mesonet, and manual netCDF files. The LDAD QC mesonet file is too
extensive to be summarized in these tables. Refer directly to the CDL file
/awips/fxa/ldad/MSAS/fslparms/QCmesonet.cdl, located on the as1 machine, which
defines the variables and the interpretation of their values within QC mesonet
LDAD netCDF files.

Table 4.2.3.6.2-1. Hydrological data stored in LDAD hydro netCDF files. The
length of the character variables is inclusive of the null terminator. Data
types are C-language types.

NAME

LDAD HYDRO NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

providerId Data Provider Station ID char of max
length 12

numericWMOid Numeric WMO identification number long

stationId Alphanumeric station Id char of max
length 11

stationName Alphanumeric station name char of max
length 51

handbook5Id Handbook Id (AFOS id or SHEF id) char of max
length 11

homeWFO Home WFO Id for the LDAD data char of max
length 4

stationType LDAD hydro station type char of max
length 11

dataProvider LDAD hydro data provider char of max
length 11

latitude Decimal degrees north float

longitude Decimal degrees east float

elevation Meter float

observationTime Time of observation, seconds since
1/1/1970

double

reportTime Time data was processed by the
provider, seconds since 1/1/1970

double

Table 4.1-1, cont.

June 2001

NAME

LDAD HYDRO NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-48

receivedTime Time data was received, seconds
since 1/1/1970

double

riverStage Meter float

riverFlow Meter3/Second float

riverReportChangeTime Time of last new river stage/flow
report, seconds since 1/1/1970

double

precip5min minute precip accumulation, mm float

precip1hr 1 hour precip accumulation, mm float

precip3hr 3 hour precip accumulation, mm float

precip6hr 6 hour precip accumulation, mm float

precip12hr 12 hour precip accumulation, mm float

precip24hr 24 hour precip accumulation, mm float

precipAccum Precip accumulation with an
unknown time period, mm

float

rawMessage Raw text LDAD hydro report char of max
length 256

Table 4.2.3.6.2-2. As in Table 4.2.3.6.2-1, but for automated mesonet data
stored in LDAD mesonet netCDF files.

NAME

LDAD MESONET NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

providerId Data provider station ID char of max
length 12

stationID Alphanumeric station ID char of max
length 6

handbook5Id Handbook Id (AFOS id or SHEF id) char of max
length 6

stationName Alphanumeric station name char of max
length 51

homeWFO Home WFO Id for the LDAD data char of max
length 4

numericWMOid Numeric WMO identification number long

Table 4.1-1, cont.

June 2001

NAME

LDAD MESONET NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-49

stationType LDAD mesonet station type char of max
length 11

dataProvider LDAD data provider char of max
length 11

latitude Degree north float

longitude Degree east float

elevation Meter float

dataPlatformType Data Platform type short

platformTrueDirection Degrees / Data platform true
direction

float

platformTrueSpeed Meter/second - Data platform true
speed

float

observationTime Date and time of observation,
seconds since 1-1-1970

double

reportTime Date and time data were processed
by the data provider, seconds since
1-1-1970

double

receivedTime Date and time the data were
received, seconds since 1-1-1970

double

temperature Kelvin float

tempChangeTime Time of last temperature change,
seconds since 1-1-1970

double

dewpoint Kelvin float

wetBulbTemperature Kelvin float

relHumidity Percent float

rhChangeTime Relative Humidity time of last
change, seconds since 1-1-1970

double

stationPressure Pascal float

stationPressChangeTime Station pressure time of last
change, seconds since 1-1-1970

float

seaLevelPressure Pascal float

pressChangeChar Character of pressure change short

pressChange3Hour Pascal / 3 hour pressure change float

Table 4.1-1, cont.

NAME

LDAD MESONET NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-50

altimeter Pascal float

windDir Degree float

windDirChangeTime Wind direction time of last change,
seconds since 1-1-1970

double

windSpeed Meter/Second float

windSpeedChangeTime Wind speed time of last change,
seconds since 1-1-1970

double

windGust Meter/Second float

windGustChangeTime Wind gust time of last change,
seconds since 1-1-1970

double

windDirMin Degree / Wind direction at minimum
windspeed

float

windDirMax Degree / Wind direction max float

skyCover Sky Cover group char array of
6 by 8

skyLayerBase Meter / Sky cover layer base float array of
6

visibility Meter float

totalCloudCover Tenths / Fraction of sky covered by
clouds

float

cloudBaseHeight Height of the lowest cloud layer short

presWeather Present weather char of max
length 25

lowLevelCloudType Low level cloud type short

midLevelCloudType Middle level cloud type short

highLevelCloudType High level cloud type short array of
3

maxTempRecordPeriod Maximum temperature recording
period

short array of
3

maximumTemperature Maximum temperature float array of
3

minTempRecordPeriod Minimum temperature recording
period

short array of
3

Table 4.1-1, cont.

NAME

LDAD MESONET NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-51

minimumTemperature Kelvin / Minimum temperature float array of
3

precipAccum mm float

precipRate Meter/Second float

precipType Precipitation type short array of
2

precipIntensity Precipitation intensity short array of
2

timeSinceLastPcp Time since last precip, seconds
since 1-1-1970

double

solarRadiation Watt/Meter2 float

solarRadChangeTime Solar Radiation time of last
change, seconds since 1-1-1970

double

seaSurfaceTemp Kelvin float

wavePeriod Second float

waveHeight Meter float

rawMessage Raw text LDAD mesonet message char of max
length 512

test1 User defined parameter - test # 1 char of max
length 51

test2 User defined parameter - test # 2 char of max
length 51

test3 User defined parameter - test # 3 char of max
length 51

test4 User defined parameter - test # 4 char of max
length 51

test5 User defined parameter - test # 5 char of max
length 51

test6 User defined parameter - test # 6 char of max
length 51

test7 User defined parameter - test # 7 char of max
length 51

test8 User defined parameter - test # 8 char of max
length 51

Table 4.1-1, cont.

NAME

LDAD MESONET NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-52

test9 User defined parameter - test # 9 char of max
length 51

Table 4.2.3.6.2-3. As in Table 4.2.3.6.2-3, but for cooperative and dial-in
data stored in LDAD manual netCDF files.

NAME

LDAD MANUAL NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

providerID Data provider station ID char of max
length 12

stationID Alphanumeric Station ID char of max
length 11

stationName Station location identifier char of max
length 51

homeWFO Home WFO Id for the LDAD data char of max
length 4

unitsCode Units Code short

latitude Decimal degrees north float

longitude Decimal degrees east float

elevation meters float

observationTime seconds since 1-1-1970 double

code10 Current 24 hour precipitation total,
inches

float

code11 Incremental precip since previous 7 a.m.,
inches

float

code12 Precip criteria report from flash flood
observer, inches

float

code13 4 hr precipitation total at previous 7
a.m. criteria report, inches

float

code14 24 hr precipitation total at 7 a.m. two
day ago, inches

float

code15 Storm total precipitation, inches float

code16 Weekly total precipitation, inches float

code17 Monthly total precipitation, inches float

Table 4.1-1, cont.

NAME

LDAD MANUAL NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-53

code18 Off-Time precipitation report, inches float

code19 Short intense precipitation durations,
hours

float

code20 Precipitation type short

code21 Degrees F / Current air temperature float

code22 Degrees F / Daily maximum air temperature float

code23 Degrees F / Daily minimum air temperature float

code24 Degrees F / Average weekly maximum air
temperature

float

code25 Degrees F / Average weekly minimum air
temperature

float

code26 Degrees F / Water temperature float

code27 Degrees F / Daily maximum soil temperature float

code28 Degrees F / Daily minimum soil temperature float

code29 Degrees F / Wet bulb temperature float

code30 Number of hours temperature is below 25
degrees F

float

code31 Number of hours temperature is below 32
degrees F

float

code32 degrees F / Dew point temperature float

code33 Feet / River stage at specified ob time float

code34 Feet / River stage at previous 1 a.m. float

code35 Feet / River state at previous 7 p.m. float

code36 Feet / River stage at previous 1 p.m. float

code37 Feet / River stage at previous 7 a.m. float

code38 Feet / River stage at 7 a.m. 2 days ago float

code39 River stage at observed crest time char of max
length 8

code40 Feet / River stage at observed crest float

code41 River stage trend short

code43 kcfs (1000's cubic feet / sec) / River
discharge instantaneous measured

float

Table 4.1-1, cont.

NAME

LDAD MANUAL NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-54

code44 kcfs / River discharge mean daily measured float

code45 kcfs / River discharge instantaneous
computed

float

code46 kcfs / River discharge mean daily computed float

code47 kcfs / River discharge instantaneous from
rating

float

code48 kcfs / River discharge mean daily from
rating

float

code49 kcfs / River discharge peak float

code50 kcfs / River discharge canal diversion float

code52 Feet / Reservoir pool elevation at
specified ob time

float

code53 Feet / Reservoir pool elevation at
previous 0600 UTC

float

code54 Feet / Reservoir pool forecast, Day 1 float

code55 Feet / Reservoir pool forecast, Day 2 float

code56 Feet / Reservoir pool forecast, Day 3 float

code57 Feet / Reservoir tailwater elevation float

code58 kcfs / Reservoir inflow, instantaneous float

code59 kcfs / Reservoir inflow, mean daily float

code60 kcfs / Reservoir outflow, instantaneous float

code61 kcfs / Reservoir outflow, mean daily float

code62 kcfs / Reservoir outflow forecast, mean
daily, Day 1

float

code63 kcfs / Reservoir outflow forecast, mean
daily, Day 2

float

code64 kcfs / Reservoir outflow forecast, mean
daily, Day 3

float

code65 kaf / Reservoir storage at specified ob
time

float

code66 Inches / Reservoir evaporation, 24 hour
total, computed

float

code67 Percent / Snow cover, areal extent float

Table 4.1-1, cont.

NAME

LDAD MANUAL NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-55

code68 Inches / Snow depth, total on ground float

code69 Inches / Snow depth, new snow float

code70 Inches/inches Snow density float

code71 Inches / Snow, water equivalent, total of
snow and ice on ground

float

code72 Snow report char of max
length 5

code73 Percent / Ice cover, areal extent float

code74 Miles / Ice extent from reporting area, up
to downstream

float

code75 Miles / Ice open water, extent from
reporting area, up or downstream

float

code76 Inches / Ice thickness float

code77 Ice report char of max
length 5

code78 Inches / Depth of frost float

code79 Inches / Depth of frost thawed float

code80 Frost structure report short

code81 Surface frost intensity short

code82 State of ground short

code83 Inches / Soil moisture float

code84 Present weather short

code85 Past 6 hour weather short

code86 Percent / Relative Humidity float

code87 Inches / Evaporation, measured, Class A
pan or other

float

code88 Miles per hour / Wind speed float

code89 Tens of degrees / Wind direction float

code90 Sunshine, hours per day float

code91 langleys / Solar energy, accumulated
incoming

float

code92 Dew intensity float

Table 4.1-1, cont.

NAME

LDAD MANUAL NETCDF VARIABLES

UNITS / DESCRIPTION DATA TYPE

-56

code93 Hours / Leaf wetness float

code94 Degrees F / Water pan temperature maximum float

code95 Degrees F / Water pan temperature minimum float

code96 Miles / 24 hour wind flow float

rawMessage ROSA raw message char of max
length 256

4.2.3.6.3 Supporting files

The file $FXA_DATA/LDAD/data/LDADinfo.txt determines which of the three types
of files (hydro, mesonet, or manual) the decoded data from a given report type
are written to. Additional LDAD configuration files may be found in under
this directory. They are described in the LDAD documentation referenced in
Section 7.0.

4.2.3.7 Model Soundings

Direct forecast model soundings from the eta model are scheduled to become
available in AWIPS in the Build 5.0 time frame. Data will be formatted and
transmitted from NCEP as BUFR-encoded messages. The data ingest, decoding,
and storage of these data will be described here once the capabilities have
been designed and implemented on AWIPS.

4.2.3.7.1 File naming conventions

Reserved.

4.2.3.7.2 Organization of files

Reserved.

4.2.3.7.3 Supporting files

Reserved.

4.2.3.8 Reading and writing to point data files

All local applications that use point data shall use the netCDF versions of
the point data files, since the netCDF API is standard and supported.
Plotfile versions of the files shall not be accessed where a netCDF option is
available. Plotfiles are currently (Build 4.3 and earlier) used by the AWIPS
D2D display applications, but are slated to be replaced by netCDF file usage
for this purpose in Build 5, at which time the plotfiles will be eliminated.

Table 4.1-1, cont.

-57

As mentioned in Section 2.3.2, the access to AWIPS data files shall have been
set to read-only for local application development. Therefore, local
applications shall not be able to write to the AWIPS point data files or
create files in the AWIPS data directories. If writing to an AWIPS point data
file is required, it is suggested that a local copy of the file be created
under the ownership of the development account, and that all writing be done
to the local copy.

Refer to Section 4.1.1.1 for an introduction to netCDF data files and data
types. The netCDF APIs to read from and write to netCDF data files are
documented in the NetCDF User's Guide. See Appendix 1 for examples of the use
of selected netCDF APIs, and for an example of the use of a utility, gennet.f,
which will generate FORTRAN 77 source code to read any existing netCDF data
file.

Table 4.1-1, cont.

-58

4.2.4 RADAR Products (Current to Build 4.3)

RPG-created base and derived products and text and status messages are
received and stored from one or more WSR-88Ds accessible to a WFO or RFC. The
full-resolution base data from which the RPG creates the PUP display products
are not currently available to AWIPS. The radar products are stored
individually in flat files under a directory tree. Individual radar data
files are given names matching their Volume Scan Time and Date. The
subdirectories in the tree generally correspond to the product attributes that
the user must select to narrow the list of all radar products down to a list
of times (files) for a given product from a given radar. Text messages,
alphanumeric tables, and site adaptation parameters extracted from RPG
products are also stored in human-readable form in the AWIPS text database.

4.2.4.1 Naming conventions for radar product directories and files

The top level directory under which all radar products are stored is
$FXA_DATA/radar. Under $FXA_DATA/radar, the directory tree for most products
looks like one of two types, depending on whether the product is a (1) radial
or raster image; or (2) a graphic, graphic overlay, or a text message.

For images, the directory tree is of the form:

~/radarName/productType/elevation/resolution/levels/

For a graphic, graphic overlay, or text message, the directory tree is of the
form:

~/radarName/productType/

Individual files are named by their Volume Scan Time as either:

yyyymmdd_hhmm (for base and derived products)

or
yyyymmdd_hhmmss (for messages not related to a specific volume scan).

For example, the 0.54 NM (1 km), 0.5° elevation, 16-level Reflectivity image
for 17 February 1997 at 1726 UTC from the Twin Lakes, Oklahoma, radar (KTLX)
would be found in the file:

$FXA_DATA/radar/ktlx/Z/elev0_5/res1/level16/19970217_1726

where Z is the shorthand name used for Base Reflectivity. The radarName
portion of the directory structure is always the lower-case conversion of the
radar site call letters (ktlx for KTLX).

A Storm Tracking Information for the same Volume Scan would be found in the
file:

$FXA_DATA/radar/ktlx/STI/19970217_1726

where the elevation, resolution, and levels subdirectories are omitted for
this type of product.

Table 4.1-1, cont.

-59

A General Status Message received from the RPG around the time of this Volume
Scan would be found in:

$FXA_DATA/radar/ktlx/GSM/19970217_172637

where 17:26:37 was the UTC receipt time of the GSM, to the second.

The productType, elevation, resolution, and levels subdirectory names used in
the tree are defined in the tables below. The last column of the productType
table indicates which, if any, of the elevation, resolution, and levels
subdirectories apply to the pathname to the product. Note that for all image
products, where one of these attributes does not apply to an image product a
dummy subdirectory name (e.g., level0) is used in order to keep the number of
subdirectories the same. Appendix 3 contains the summary of all applicable
radar data subdirectories below /radarName, by product type. As always in
UNIX, all the directory and file names are case sensitive.

Table 4.2.4.1-1. Subdirectory name definitions for the radar product data
attribute productType. The ELEV/RES/LEVEL column indicates the number, if
any, of additional subdirectories which are part of the pathname to the
files for the product type. An E means elevation applies, an R means
resolution applies, an L means levels applies, and none means there are no
subdirectories beyond productType.

DIRECTORY
NAME

NEXRAD
ACRONYM

DESCRIPTION /ELEV
/RES
/LEVELS

AAP -- Alert Adaptation Parameter Message none

AM -- Alert Message none

APR APR AP-removed Composite Reflectivity E/R/L

CFC -- Clutter Filter Control E/R/L

CM CM Combined Moment E/R/L

CS CS Combined Shear none

CSC CSC Combined Shear Contour none

CSCT -- Combined Shear Contour Annotations none

CST -- Combined Shear Annotations none

CZ CR Composite Reflectivity E,R,L

CZC CRC Composite Reflectivity Contour E,R

DHS DHR Digital Hybrid Scan Reflectivity E/R/L

DPA DPA Digital Precipitation Array E/R/L

DSTP DSP Digital Storm Total Precipitation E/R/L

Table 4.1-1, cont.

DIRECTORY
NAME

NEXRAD
ACRONYM

DESCRIPTION /ELEV
/RES
/LEVELS

-60

ET ET Echo Tops E/R/L

ETC ETC Echo Tops Contour none

FTM FTM Free Text Message none

GSM GSM General Status Message none

HDP DPA Hourly Digital Precipitation Array E,R,L

HI HI Hail Index none

HIT -- Hail Index Annotation Table none

HSR HSR Digital Hybrid Scan Reflectivity E,R,L

LRA LRA Layer Composite Reflectivity (Average) E,R,L

LRM LRM Layer Composite Reflectivity (Maximum) E,R,L

M M Mesocyclone none

MT -- Mesocyclone Annotation Table none

OHP OHP One Hour Precipitation Accumulation E,R,L

OHPT -- One Hour Precipitation Accumulation
Annotation

none

PRR -- Product Request Response none

PTL -- Products Available List (Message code 8) none

RCM RCM Radar Coded Message none

RCS RCS Reflectivity Cross Section (16 LEVEL) E/R/L

SCS SCS Spectral Width Cross Section E/R/L

SPD SPD Supplemental Precipitation Data E,R,L
(Note 1)

SRM SRM Storm-Relative Mean Radial Velocity (Map) E,R,L

SRR SRR Storm-Relative Mean Radial Velocity (SWA
Region)

E/R/L

SS SS Storm Structure none

STI STI Storm Tracking Information none

STIT -- Storm Tracking Information Annotation none

STP STP Storm Total Precipitation E,R,L

Table 4.1-1, cont.

DIRECTORY
NAME

NEXRAD
ACRONYM

DESCRIPTION /ELEV
/RES
/LEVELS

-61

STPT -- Storm Total Precipitation Annotation none

SW SW Base Spectrum Width E,R,L

SWP SWP Severe Weather Probability none

SWR SWR SWA Reflectivity E/R/L

SWS SWS SWA Shear E/R/L

SWV SWV SWA Base Velocity E/R/L

SWW SWW SWA Base Spectrum Width E/R/L

THP THP Three Hour Precipitation Accumulation E,R,L

THPT -- Three Hour Precipitation Accumulation
Annotation

none

TVS TVS Tornado Vortex Signature none

TVST -- Tornado Vortex Signature Annotations none

UAM UAM User Alert Message none

USRA USP User Selectable Precipitation Accumulation E/R/L

V V Base Velocity E,R,L

VAD VAD Velocity-Azimuth Display none

VADT -- Velocity-Azimuth Display Annotation none

VCS VCS Velocity Cross Section E/R/L

VIL VIL Vertically-Integrated Liquid E,R,L

VWP VWP VAD Wind Profile none

WER WER Weak Echo Region E/R/L

XSR RCS Reflectivity Cross Section (8 LEVEL) E/R/L

XSV VCS Velocity Cross Section (8 LEVEL) E/R/L

Z R Base Reflectivity E,R,L

tstorm n/a Various SCAN thunderstorm threat and QPF
data and configuration files. Not RPG
products.

n/a

Note 1. Uses the res40 value for resolution attribute for the 1/4 LFM
resolution grid. No longer applies in NEXRAD Build 9 version of product,
which is alphanumeric only.

Table 4.1-1, cont.

-62

Table 4.2.4.1-2. Subdirectory name definitions for the radar product data
attribute elevation.

DIRECTORY
NAME

NEXRAD
NAME

DESCRIPTION

layer0 -- A dummy subdirectory name used when no layer or
elevation applies to image product, but there are
resolution and data levels subdirectories to follow

layer1 LOW ALT Low Layer

layer2 MID ALT Middle Layer

layer3 HIGH ALT High Layer

elev0_5 0.5 deg 0.5° elevation

elev1_5 1.5 deg 1.5° elevation

elev2_4 2.4 deg 2.4° elevation

elev2_5 2.5 deg 2.5° elevation

elev3_4 3.4 deg 3.4° elevation

elev3_5 3.5 deg 3.5° elevation

elev4_3 4.3 deg 4.3° elevation

elev4_5 4.5 deg 4.5° elevation

elev5_3 5.3 deg 5.3° elevation

elev6_0 6.0 deg 6.0° elevation

elev6_2 6.2 deg 6.2° elevation

elev7_5 7.5 deg 7.5° elevation

elev8_7 8.7 deg 8.7° elevation

elev9_9 9.9 deg 9.9° elevation

elev10_0 10.0 deg 10.0° elevation

elev12_0 12.0 deg 12.0° elevation

elev14_0 14.0 deg 14.0° elevation

elev14_6 14.6 deg 14.6° elevation

elev16_7 16.7 deg 16.7° elevation

elev19_5 19.5 deg 19.5° elevation

Table 4.1-1, cont.

-63

Table 4.2.4.1-3. Subdirectory name definitions for the radar product data
attribute resolution.

DIRECTORY
NAME

NEXRAD
NAME

DESCRIPTION

res0_25 .13 NM 0.13 NM resolution (0.25 km)

res0_5 .27 NM 0.27 NM resolution (0.5 km)

res1 .54 NM 0.54 NM resolution (1 km)

res2 1.1 NM 1.1 NM resolution (2 km)

res4 2.2 NM 2.2 NM resolution (4km, also 1/40 LFM for HDP)

res40 -- 1/4 LFM grid for (obsolete) supplemental
precipitation data array (e.g.,
~/SPD/layer0/res40/level8/)

res0 -- Dummy resolution name, used for the range vs.
azimuth (B-scan) Combined Moment image/graphic
product

Table 4.2.4.1-4. Subdirectory name definitions for the radar product data
attribute levels.

DIRECTORY
NAME

NEXRAD
NAME

DESCRIPTION

level16 16 LEVEL 16-color-level displayable image data

level8 8 LEVEL 8-color-level displayable image data

level256 -- 256-level non-displayable (on PUP) digital arrays.
For digital precipitation arrays, linear for DSTP
(DSP) product, scaled dBA for HDP (DPA) product,
where dBA = 10log[accumulation/(1 mm)]. Also used
for DHS [Digital Hybrid Scan Reflectivity] (DHR).
See NEXRAD Product Specification ICD, 1208378G, for
level and increment definitions.

4.2.4.2 Radar text products

Alphanumeric WSR-88D radar products, and text fields extracted from graphical
radar products with tabular or other alphanumeric data (e.g., the Hail Index
table, site adaptation parameters), are stored in the text database (see
Section 4.2.7) under the AFOS Node (CCC portion of the CCCNNNXXX Product
Identification Label [PIL]) identifier “WSR”. Radar text products can be
viewed from the AWIPS Text Workstation, or can be retrieved from the database
using the textdb utility.

Table 4.2.4.1-2, cont.

-64

The type of text product is indicated by the NNN category identifier, and the
radar site that the product data pertain to is given by the XXX location
identifier. The XXX value is determined by dropping the leading character
(“K” for CONUS) and taking the trailing three characters of the WSR-88D
station ID. For example, for the Amarillo, Texas WSR-88D station ID (KAMA),
the XXX value is “AMA”, and its Free Text Messages would be stored in AWIPS
under the PIL “WSRFTMAMA”. The NNN radar text product categories and type(s)
of data stored for each product type are defined in Table 4.2.4.2-1.

Table 4.2.4.2-1. Product category (NNN) identifiers for radar text products
stored in the AWIPS text database.

XXX Identifier Text Product Description

CSC Combined Shear Adaptable Parameters (from Contour product)

CSH Combined Shear Adaptable Parameters (from Image product)

FTM Free Text Message

HAI Hail Index Cell Table(s) and/or Adaptation Parameters

MES Mesocyclone Cell Table(s) and/or Adaptation Parameters

OHP One-Hour Precipitation Accumulation Parameters

PTL RPG “Products Available” Table (One-Time or dial-out only)

RCM Radar Coded Message

SPT Storm Total Precipitation Accumulation Parameters

STI Storm Cell Tracking/Forecast Table(s) and/or Adaptation
Parameters

STP RCM??

THP Three-Hour Precipitation Accumulation Parameters

TVS Tornadic Vortex Signature (TVS) Cell Table and/or TVS
Adaptation Parameters

UAM User Alert Message

VWP VAD Wind Profile Adaptable Parameters

4.2.4.3 Radar product data format

WSR-88D radar product messages from the RPG are stored in as-received format,
which corresponds to the NEXRAD Archive Level IV storage format, and also the
RPG-to-Associated-PUP message format. A minimal amount of decoding is
performed on the products as they are received in order to extract the
attributes needed to identify the contents of the product message, time-stamp
the product data via its file name, and create and store the radar product
file in the correct directory. A full description of the format of WSR-88D
radar products is beyond the scope of this document. It is strongly

Table 4.2.4.1-2, cont.

-65

recommended that if there is a need to use radar data in a local application,
that the developer contact a knowledgeable person in an organization (e.g.,
FSL, TDL, or the OSF) that has done applications development involving the use
of these data.

4.2.4.4 AWIPS APIs for radar product processing

APIs for radar product processing fall into two categories: data access APIs
and data processing APIs. Each of these API categories is described in the
following subsections.

4.2.4.4.1 Radar Data Access

All current radar data inventory and access in AWIPS is through interactive
display routines and processes in D2D. The APIs used for radar data access in
the D2D interactive display environment do not readily apply to applications
in a stand-alone environment, so a description of these APIs is deferred until
suitable local application radar APIs are available. Until then, sufficient
information has been provided in Section 4.2.4.1 to allow a local application
developer to develop code to locate and access any specific radar product file
based on its product attributes.

4.2.4.4.2 Radar Data Processing APIs

APIs are available to extract application-ready information from the various
blocks of data that comprise the RPG products. Unlike the radar data access
routines, the decoding routines are less embedded in the D2D environment, and
may be practicably modified for stand-alone applications' use. These routines
are originally C, minimally rewritten in C++. If needed, the original C
functions should be available from FSL. Stand-alone APIs are planned to be
available for use at some time in the future.

It is definitely preferable to use an existing set of APIs for decoding and
processing RPG products rather than trying to write a new set of APIs. There
are many mistakes and missing details in the NEXRAD documentation that have
been overcome by FSL and other organizations through trial-and-error, and it
is worthwhile to make use of this experience whenever possible.

The C++ routine decodeRadar in ~/src/dmRadar/ calls all of the functions that
extract the product parameters and the image or graphic data from a single
product data file. The decodeRadar routine contains three functions for the
three basic data types: decodeRadial, decodeRaster, and decodeGraphic. Only
one of these three functions is used to decode a product of a given type. The
proper decode function is determined by the arguments provided in the call to
decodeRadar.

The decode functions take as arguments the pathname to the radar product file
and a pointer to the object type that contains the decoded data. The
decodeRadial function takes two additional input arguments, resolution and
ring. The resolution parameter refers to the gate spacing along the radial,
and is used to determine how many gates are expected along a single radial,
which is used to size the unpacked RLE image data array. The ring parameter
controls whether a bounding ring is engraved into the image data at the
maximum range of the product.

Table 4.2.4.1-2, cont.

-66

The three decode functions each call a set of common functions for decoding
product blocks that are contained in all WSR-88D products. The routine
getWsrHdrInfo reads the variables in the Message Header Block, including the
NEXRAD Product Code, the source radar ID number, and the time of message
creation. The routine getWsrPdbInfo reads the Product Description Block and
provides the latitude, longitude, and height of the radar; the operational
mode and Volume Coverage Pattern; the Volume Scan Time and Number, and product
generation time; the elevation angle and index; and the center azimuth and
range (for SWA and Cross Sections). The routine getWsrPsbInfo reads the
Product Symbology Block ("the data"), and calls different routines depending
on the data type.

Data levels and product legend information are read for radial and raster
image products. Graphic product layers are separated from the product for
graphic products. Image data arrays for radial and raster image products are
received packed via a run-length-encoding (RLE) algorithm, and must be
unpacked before use. The APIs extractRaster and extractRadial are called to
unpack the RLE data into full arrays that can be processed into displays or
used in other algorithms.

Table 4.2.4.1-2, cont.

-67

4.2.5 Satellite Imagery

4.2.5.1 Naming Conventions for Image Directories and Files

In WFO-Advanced, satellite images are stored in netCDF files once they have
been decoded by the satellite decoder. Thus, all image Input/Output is done
with netCDF APIs. Each file contains one image.

All netCDF image files are stored in a directory pathname consisting of two
parts. The first (leading) part consists of six fields filled in according to
image scale and band. Here is a template for the leading six fields of the
path:

$FXA_DATA/sat/<source>/netCDF/<scale>/<projection>_<band>

where:

$FXA_DATA is an environment variable specifying the root of the data
directory tree. This variable's current value is "/data/fxa".

<source> is either SBN or FSL (subdirectory FSL is currently not used);

<scale> may be any of: alaska, conusC, eastCONUS, hawaii, grid201, nhSat,
puertoRico, superNat9, or westCONUS;

<projection> may be any of: akBig (for scale alaska), alaska (for scale
alaska), conus (for scales conusC, eastCONUS, and westCONUS), fourSat
(for scale grid201), nhem (for scale nhSat), prBig (for scale puerto
Rico), puertoRico (for scale puertoRico), or super (for scale superNat9);
and

<band> may be any of: i11 (for 11.0 micron infra-red images), i12 (for 12.0
micron infra-red images), i39 (for 3.9 micron infra-red images), iwv (for
6.7 micron water vapor channel infra-red images), or vis (for visible
light images).

The second part of the path is not always present. When present, it consists
of a subdirectory /clean/, /regClip/ (for regional clip), or /remap/. An
understanding of these subdirectories is best obtained by a quick overview of
some of the satellite directory tree, which follows:

The following directories contain raw NESDIS sectors for the northern
hemisphere:

$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_i11
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_i12
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_iwv
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_vis
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_i39

Table 4.2.4.1-2, cont.

-68

The following directories contain links to sat/SBN/netCDF/nhSat/nhem*:

$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_i11/clean
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_i12/clean
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_iwv/clean
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_vis/clean
$FXA_DATA/sat/SBN/netCDF/nhSat/nhem_i39/clean

The following directories contain raw North American NESDIS sectors
(superNat):

$FXA_DATA/sat/SBN/netCDF/superNat9/super_i11
$FXA_DATA/sat/SBN/netCDF/superNat9/super_i12
$FXA_DATA/sat/SBN/netCDF/superNat9/super_iwv
$FXA_DATA/sat/SBN/netCDF/superNat9/super_vis
$FXA_DATA/sat/SBN/netCDF/superNat9/super_i39

The following directories contain links to sat/SBN/netCDF/superNat9/super*:

$FXA_DATA/sat/SBN/netCDF/superNat9/super_i11/clean
$FXA_DATA/sat/SBN/netCDF/superNat9/super_i12/clean
$FXA_DATA/sat/SBN/netCDF/superNat9/super_iwv/clean
$FXA_DATA/sat/SBN/netCDF/superNat9/super_vis/clean
$FXA_DATA/sat/SBN/netCDF/superNat9/super_i39/clean

The following directories contain CONUS images, which are remapped from both
the North American and high resolution east/west CONUS sectors:

$FXA_DATA/sat/SBN/netCDF/conusC/conus_i11/remap
$FXA_DATA/sat/SBN/netCDF/conusC/conus_i12/remap
$FXA_DATA/sat/SBN/netCDF/conusC/conus_iwv/remap
$FXA_DATA/sat/SBN/netCDF/conusC/conus_vis/remap
$FXA_DATA/sat/SBN/netCDF/conusC/conus_i39/remap

The following directories contain links to sat/SBN/netCDF/conusC/conus*/remap:

$FXA_DATA/sat/SBN/netCDF/conusC/conus_i11
$FXA_DATA/sat/SBN/netCDF/conusC/conus_i12
$FXA_DATA/sat/SBN/netCDF/conusC/conus_iwv
$FXA_DATA/sat/SBN/netCDF/conusC/conus_vis
$FXA_DATA/sat/SBN/netCDF/conusC/conus_i39

The following directories contain high resolution east CONUS sectors. Only
one version of these are kept because they are used only for clipping and
remapping:

$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_i11
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_i12
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_iwv
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_vis
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_i39

Table 4.2.4.1-2, cont.

-69

The following directories contain high resolution west CONUS sectors. Only
one version of these are kept because they are used only for clipping and
remapping:

$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_i11
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_i12
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_iwv
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_vis
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_i39

The following directories contain high resolution east CONUS data clipped to
the regional scale:

$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_i11/regClip
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_i12/regClip
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_iwv/regClip
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_vis/regClip
$FXA_DATA/sat/SBN/netCDF/eastCONUS/conus_i39/regClip

The following directories contain high resolution west CONUS data clipped to
the regional scale:

$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_i11/regClip
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_i12/regClip
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_iwv/regClip
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_vis/regClip
$FXA_DATA/sat/SBN/netCDF/westCONUS/conus_i39/regClip

Following the path is the file name. The file names are based on image date
and time. The format for WFO-Advanced netCDF image file names is:

yyyymmdd_HHMM

where:

yyyy is the 4-digit year;
 mm is the 2-digit month;
 dd is the 2-digit day-of-month;
 HH is the 2-digit hour; and
 MM is the 2-digit minute.

The following two examples illustrate how these pieces are put together:

/data/fxa/sat/SBN/netCDF/eastCONUS/conus_vis/regClip/19970425_1815

contains the eastern CONUS visible image clipped to the regional scale for
1815Z on April 25, 1997, and

/data/fxa/sat/SBN/netCDF/nhSat/nhem_iwv/20000229_1532

holds the northern hemisphere 6.7 micron water vapor channel image for 1532Z
on February 29, 2000.

4.2.5.2 Organization of netCDF Image Files

Table 4.2.4.1-2, cont.

-70

The layout of netCDF image files in WFO-Advanced is simple and
straightforward. There are nineteen global attributes. There are no
coordinate variables (dimensions that are also variables with values stored in
them). There are two dimensions and (including the image itself) three
variables.

4.2.5.2.1 Global Attributes

The netCDF image files of WFO-Advanced have nineteen global attributes, all
currently used for internal file documentation only. They are:

 1) “channel” = a 23-character string identifying the wavelength of the
satellite sensor used to make the original image.

 2) “depictorName” = an 80-character string consisting of a unique
identifier for the map projection / areal coverage combination for the
image in this file.

 3) “projIndex” = a long int which identifies the projection of the image
stored in this file.

 4) “projName” = an 80-character string giving the name of the map
projection of the image stored in this file.

 5) “centralLat” = a float value giving the latitude (in degrees north) at
which the image’s map projection is tangent to the earth.

 6) “centralLon” = a float value giving the longitude (in degrees east) at
which north is “up on the image’s map projection.

 7) “rotation” = a float value giving the angle (in degrees clockwise) the
y-axis of the image’s map projection is rotated from north.

 8) “xMin” = a float value giving an arbitrary cartesian coordinate for the
image’s map projection. This is for FSL’s use in D-2D.

 9) “xMax” = a float value giving an arbitrary cartesian coordinate for the
image’s map projection. This is for FSL’s use in D-2D.

 10) “yMin” = a float value giving an arbitrary cartesian coordinate for the
image’s map projection. This is for FSL’s use in D-2D.

 11) “yMax” = a float value giving an arbitrary cartesian coordinate for the
image’s map projection. This is for FSL’s use in D-2D.

 12) “lat00" = a float value giving the latitude (in degrees north) of the
lower left (southwest) corner of the image.

 13) “lon00" = a float value giving the longitude (in degrees east) of the
lower left (southwest) corner of the image.

 14) “latNxNy" = a float value giving the latitude (in degrees north) of the
upper right (northeast) corner of the image.

 15) “lonNxNy" = a float value giving the longitude (in degrees east) of the
upper right (northeast) corner of the image.

 16) “dxKm” = a float value giving the left-to-right (west-to-east) size in
kilometers of one pixel at the latitude and longitude given by global
attributes “latDxDy” and “lonDxDy” defined below.

 17) “dyKm” = a float value giving the bottom-to-top (south-to-north) size in
kilometers of one pixel at the latitude and longitude given by global
attributes “latDxDy” and “lonDxDy” defined below.

 18) “latDxDy” = a float value giving the latitude (in degrees north) at
which the “dxKm” and “dyKm” (defined above) values are valid.

 19) “lonDxDy” = a float value giving the longitude (in degrees east) at
which the “dxKm” and “dyKm” (defined above) values are valid.

4.2.5.2.2 Dimensions and Coordinate Variables.

Table 4.2.4.1-2, cont.

-71

The netCDF image files of WFO-Advanced have no coordinate variables and no
unlimited (or record) dimensions.

Two dimensions are available in WFO-Advanced netCDF image files for
dimensioning (sizing) variables. They are:

 1) "y" = the number of pixels along the left and right (bottom-to-top or
south-to-north) edges of the image.

 2) "x" = the number of pixels along the bottom and top (the right-to-left
or west-to-east edges) of the image.

4.2.5.2.3 Variables, with their Dimensions and Attributes.

Build 4.3 netCDF image files have only three variables. Here they are, with
their dimensions and attributes:

 1) "image" = a two-dimensional array of pixels. This is the satellite
image itself. Values of this variable are of type NC_BYTE (byte).

Before using a pixel value from "image", the programmer should check
that it is neither 0 nor 255. FSL has tried to make 0 the value used to
represent "not defined" because it makes for much more visually pleasing
images when there have been large areas missing, as opposed to the value
of 255 which was being used in the NESDIS files. FSL has tried to set
it up so that a large consecutive area of 255s would get converted to
0s, but that a single 255 would not, in case it was real data. This has
only been partially successful in cases where missing data is present in
the middle of images, and it is possible that in the future FSL will
just convert all 255s to 0s.

The variable "image" has two dimensions ("y" and "x") and no attributes.

 2) "validTime" = the time of the image in whole seconds since 00Z on
January 01, 1970. The value of this variable is of type NC_DOUBLE
(double). This variable has no dimensions and two attributes. The
first attribute is a 39-character string called "units", and has the
value "seconds since 1970-1-1 00:00:00.00 0:00". The second attribute
is a 10-character string called "long_name", and has the value "Valid
Time".

 3) "valid100thSecs" = hundredths of a second after "validTime" that the
satellite began the scan that produced the image in this file. The
value of this variable is of type NC_BYTE (byte). This variable has no
dimensions and two attributes. The first attribute is a 12-character
string called "units", and has the value "centiseconds". The second
attribute is a 10-character string called "long_name", and has the value
"Valid 100th of a second".

4.2.5.3 Other Supporting Files

None for build 4.3.

4.2.5.4 Software APIs for netCDF image file I/O

Table 4.2.4.1-2, cont.

-72

No APIs for reading from or writing to WFO-Advanced netCDF image files will be
provided in build 4.3. To read in an image, program the following steps
(described for C language programming):

 1) construct the full path (directory + file name) for the netCDF file
containing the desired image.

 2) call "nc_open" to open the netCDF file. For the calling argument
"filename", pass in the path constructed in the preceding step.

 3) call "nc_inq_varid" to get the netCDF variable id for the image. For
the calling argument "ncid", use the netCDF file id returned by the
"nc_open" call in step 2 above. For the calling argument "name", pass
in a string containing "image".

 4) call “nc_inq_vardimid” to get the netCDF dimension id’s for the image
variable’s two dimensions. For the calling argument "ncid", use the
netCDF file id returned by the "nc_open" call in step 2 above. For the
calling argument “varid”, pass in the netCDF variable id returned by the
"nc_inq_varid" call in step 3 above.

 5) for each netCDF dimension id returned by the “nc_inq_vardimid” call in
step 4 above (there should be two), call “nc_inq_dimlen” to get the
dimensions of the image. For the calling argument "ncid", use the
netCDF file id returned by the "nc_open" call in step 2 above. For the
calling argument “dimid”, use one of the netCDF dimension id’s returned
by the “nc_inq_vardimid” call in step 4 above.

 6) using the dimensions returned by the two "nc_inq_dimlen" calls in the
previous step, allocate (malloc) memory space for the image (an array of
bytes).

 7) call "nc_get_vara_uchar" to get the image. The calling arguments are as
follows:

"ncid" - use the netCDF file id returned by the "nc_open" call in step 2
above.

"varid" - use the variable id returned by the "nc_inq_varid" call in
step 3 above.

"start" - use an array consisting of two longs, both set equal to zero.
"count" - use an array consisting of two longs. Fill the array with the

two dimensions returned by the two “nc_inq_dimlen” calls in step 5
above.

"up" - pass in the address of the image (the byte array) you allocated
in step 6 above. "nc_get_vara_uchar" will read the image into this
array and return it to you.

 7) call "nc_close" to close the netCDF file. For the calling argument
"ncid", use the netCDF file id returned by the "nc_open" call in step 2
above.

Table 4.2.4.1-2, cont.

-73

As a part of build 3.0, TDL supplied the “get_image_nav” API to provide
programs access to image navigation data. The API continues to be available
in build 4.3. To use the API, use the following header files:

/awips/adapt/nav/inc/Navigation.h (when calling from C), or
/awips/adapt/nav/inc/Navigation.H (when calling from C++)

Here is the prototype for the API:

void get_image_nav (
const char *image_source , /* input */
const char *image_band , /* input */
float *dx , /* output */
float *dy , /* output */
float *lat1 , /* output */
float *lat2 , /* output */
float *lon1 , /* output */
float *lon2 , /* output */
long *nx , /* output */
long *ny , /* output */
long *projection , /* output */
long *relativity , /* output */
float *stdlat1 , /* output */
float *angle2 , /* output */
float *truelat , /* output */
float *align , /* output */
long *status); /* output */

FORTRAN callers need not include anything to use this API, but may view the
header files to see the function names and calling sequences. Both of the
include files named above require six other include files:
 hmHMC_fileUtils.h
 hmHMC_interpUtils.h
 hmHMC_parseNum.h
 hmHMU_STATUS.h
 hmHMU_destroyObject.h
 hmHMU_stringUtils.h
either directly or indirectly. These may be obtained from the TDL web site by
doing the following:
1.First, bring up the TDL home page (see section 7, “OnLine Resources and

URLs”, for the URL);
2.From there, click on the “AWIPS LOCAL APPLICATIONS DEVELOPMENT SUPPORT” link

to bring up the “AWIPS LOCAL APPLICATIONS DEVELOPMENT” page;
3.from there, click on the “DOWNLOAD/UPLOAD” link to bring up the “Available

Files to Download” page;
4.From there, click on the “C++ Navigation Routines” choice, which will ftp

the above six include files (and a few other files as well) to you.

All (C++, C, and FORTRAN) callers must link to:

/awips/adapt/nav/lib/libNavigation.a

when building their executables. This API searches the navigation file (an
ASCII flat file called "Navigation.txt") for the navigational information for

Table 4.2.4.1-2, cont.

-74

the combination of map projection, geographic area of coverage, and
radiometric band specified by the calling arguments "image_source" and
"image_band", and returns that information to the caller. The file
"Navigation.txt" is stored in a directory named by the UNIX environment
variable "NAVFILE_DIR". The software reads "NAVFILE_DIR" to find and open
"Navigation.txt". Therefore, "NAVFILE_DIR" must be correctly set to the
complete, absolute directory of "Navigation.txt" before "get_image_nav" can be
used. If "NAVFILE_DIR" is incorrectly set, or cannot be found,
"get_image_nav" will abort. The currently correct setting for "NAVFILE_DIR"
is "/awips/adapt/nav/data/".

The calling arguments for "get_image_band", in alphabetical order, are as
follows:

"align" = (a pointer to)
a) for polar stereographic and Lambert conformal projections, the

vertical longitude; the east longitude (in degrees) parallel to the
map projection's positive y axis.

b) for a local stereographic projection, the rotation angle of the
positive y axis in degrees clockwise from north.

"angle2" = (a pointer to)
a) for a tangent cone projection, same as stdlat1.
b) for the secant cone projection, the second (furthest from pole)

latitude (in degrees north) at which the secant cone cuts the earth.
c) for a stereographic projection, the longitude (in degrees east) of

the center of the projection. A value of +/-90 indicates polar
stereographic.

"dx" = (a pointer to) the left-right (west-east) pixel size (in meters) at
the projection's "true" latitude.

"dy" = (a pointer to) the bottom-top (south-north) pixel size (in meters) at
the projection's "true" latitude.

"image_band" = (a pointer to) a string specifying the radiometric band used
by the satellite sensor to obtain the image data for which navigational
information is wanted. Valid values are "i11" (for 11 micron infra-
red), "i12" (for 12 micron infrared), "i39" (for 3.9 micron infrared),
"iwv" (for the 6.7 micron infrared water vapor channel), and "vis" for
visible.

"image_source" = (a pointer to) a string specifying the combination of map
projection and geographic scale of the image for which navigational
information is wanted. Valid values are "conusC", "eastCONUS", "nhSat",
"superNat9", and "westCONUS".

"lat1" = (a pointer to) the north latitude (in degrees) of the first or
lower left pixel.

"lat2" = (a pointer to) the north latitude (in degrees) of the last or upper
right pixel.

Table 4.2.4.1-2, cont.

-75

"lon1" = (a pointer to) the east longitude (in degrees) of the first or
lower left pixel.

"lon2" = (a pointer to) the east longitude (in degrees) of the last or upper
right pixel.

"nx" = (a pointer to) the number of pixels along a row (the right-to-left or
west-to-east) edges of the image.

"ny" = (a pointer to) the number of pixels along a column (the bottom-to-top
or south-to-north) edges of the image.

"projection" = (a pointer to) the integer grib code for the map projection:

1 = Mercator
3 = Lambert conformal
5 = stereographic

"relativity" = (a pointer to) an integer code for how vector components are
resolved:

0 = vector components are resolved relative to easterly and northerly
directions.

1 = vector components are resolved relative to the defined grid in the
direction of increasing x and y.

"status" = (a pointer to) get_image_nav's return status. Possible values
are:

0 = The requested navigation data was successfully found, extracted, and
returned.

2 = The software did not recognize the input combination of
"image_source" and "image_band" values.

6 = An attempt to allocate memory failed. Most likely, insufficient
memory was available.

7 = Most likely, the file "Navigation.txt" is corrupted.
8 = The file "Navigation.txt" could not be read. This is not

necessarily a problem with the file.
9 = Indicates an undefinable error, possibly a bug in the software.

"stdlat1" = (a pointer to):
a) for a tangent cone projection, the tangency latitude; the latitude

(in degrees north) at which the earth is tangent to the map
projection.

b) for a secant cone projection, the first (closest to pole) latitude
(in degrees north) at which the secant cone cuts the earth.

c) for a stereographic projection, the latitude (in degrees north) of
the center of the projection.

"truelat" = (a pointer to) the north latitude (in degrees) at which the
projection's pixel size is defined. For AWIPS projections, "truelat" =
"stdlat1".

Table 4.2.4.1-2, cont.

-76

The input arguments "image_source" and "image_band" must be C-language style
strings, that is, the character immediately following the last (rightmost)
printable character of the string must be CHAR(0) in FORTRAN or NULL
[(char) 0] in C and C++.

Navigational information that is not applicable to the specified map
projection and geographic area of coverage is returned with the value -9999.0
for type "float", or -9999 for type "long".

This API is designed to be callable from C++, C, and FORTRAN. Simple examples
may be viewed in the Navigation man page or in the Navigation test drivers
(navtest.C for C++, navtest.c for C, and navtest.f for FORTRAN; note that
navtest.f will also need itlen.f). These may be obtained via the same
procedure given above for getting the six include files needed by Navigation.h
and Navigation.H.

Navigational data for images in the /clean, /remap, and /regClip
subdirectories are not available through this API.

4.2.6 Satellite Soundings

Deferred.

Table 4.2.4.1-2, cont.

-77

4.2.7 Text Database

The text subsystem consists of the text display, the Informix database,
supporting files, and the storage/retrieval of text messages. The decoded
text products are stored in the fxatext database in the Informix RDBMS. The
products that are currently stored in the database include virtually all text
products with AFOS Product Identification Labels (PILs), with additional PILs
defined for Off-CONUS text products from Alaska and Pacific regions. The
database works on a circular buffer basis, storing the newest version of each
product over the oldest. The number of versions of each product or category
of products is specified in a table in the file versions_lookup_table.dat. To
improve performance, the storage space is fragmented based on the frequency of
requests for a category of products; the typical read response time is 1 to 2
seconds.

The text database consists of six Informix tables:

! textproductinfo

This semi-static data table stores the controls and tracks version
information for each product that is stored in the fxatext database.
There are six columns in the table: cccid, nnnid, xxxid, versionstokeep,
latestversion, and largeproduct. The largeproduct attribute determines
whether a product is stored in the largetextproducts table
(largeproduct=1) as Informix data type TEXT, or in the stdtextproducts
table (largeproduct=0) as data type CHAR.

! stdtextproducts

This dynamic data table holds the individual METARs, TAFs, and other
small-sized AFOS text products as CHAR data in the product column. There
are seven columns in this table: cccid, nnnid, xxxid, versionnumber,
createtime, product, and productlength. The version_number field
corresponds with the latestversion field from the textproductinfo table
for the corresponding product.

! largetextproducts

This dynamic data table holds the individual large- or unknown-sized text
products as TEXT data in the product column. There are 6 columns in this
table: cccid, nnnid, xxxid, versionnumber, createtime, and product. The
version_number field corresponds with the latestversion field from the
textproductinfo table for the corresponding product. When a new product
whose PIL (and therefore, its typical size) is unknown is stored to the
text database, it is stored to the largetextproducts table by default,
since there is a larger size limitation on the TEXT data type.

! state_match

This semi-static data table contains a listing of all xxx_id and ccc_id
combinations for a state. There are three columns in the table: state,
xxx, and ccc.

Table 4.2.4.1-2, cont.

-78

! versionstable

This semi-static data table contains a "template" of a first-guess number
of versions to store for a product category (NNN) for a given AFOS Node
(CCC). It is localized to give a larger number of versions for products
originating nearest the WFO, and products such as METARs that are
numerous and often requested.

4.2.7.1 Text product identifiers

The AFOS Product Identifiers are as follows:

CCC - code (currently, AFOS Node) for the site where the product entered
NNN - code for the product category
XXX - 1- to 3-character code for the valid area/site
SS - 2-character state code.

4.2.7.2 Supporting files

The text subsystem uses flat files to hold related static data tables
containing informational and control data. The function initializeDicts opens
and reads the flat file data, and is called by textWkstnStorage, the main
driver for the textDB decoder. It then initializes the dictionaries for the
AFOS, collective, bit and upper air tables and loads the ISPAN, national and
station arrays. For each incoming product, its data descriptor, a 4-6
character code, is compared to the collective table to see if it is a
collective, upper air or standard product. Then the correct decoder for the
type of product involved is called.

The data tables are as follows:

afos_lookup_table.dat - contains the origins mapped with the CCC

bit_table.dat - contains the NNN of National bit products mapped
with AAA to be filled in with the local NWS
office

collective_table.dat - contains the data descriptors of the collective
products mapped with the AFOS ID CCCnnnXXX where
nnn is the corresponding NNN for that product

ispan_table.dat - contains the WMO header (data descriptor +
origin) for the non-collective products mapped
with the AFOS ID, used as a last resort

national_category_table.dat - contains the XXX mapped with the CCC for
collective products

upair_table.dat - contains the data descriptor for upper air
products mapped with the AFOS ID CCCnnnXXX,
where nnn is the corresponding NNN for that
product

Table 4.2.4.1-2, cont.

-79

station_table.dat - contains the five digit station numbers mapped
with the XXX for the upper air products

4.2.7.3 Text Database I/O APIs

The interface to the text database is a UNIX command named textdb. In order
to maintain the integrity of the data in the text database, the use of the
textdb utility to read from, write to, or modify the text database tables is
recommended over programming directly in SQL or using the Informix dbaccess
utility.

The textdb command line options -r and -w, respectively, are used to read from
and write to the database, with the product ID given as an argument. Data are
read from and written to standard input and standard output. The textdb
command follows the UNIX convention of returning a status of zero upon
success, and non-zero if an error occurs.

For example, the UNIX command line

textdb -r DENNOWDEN | more

will pipe the latest Denver nowcast into the UNIX text reader more for viewing
from the terminal window, and the command line

textdb -w DENWRKNOW < workFile.txt

will store the contents of workFile.txt (ASCII text file created by an
application program, for example) as a nowcast text product in the text
database. A standard text product may be up to 2000 bytes.

A NOTE OF CAUTION:

In using the API, a great deal of care must be taken to assure that:

1) only known, meaningful product IDs are used in writing products to the
database. The textdb utility will write any product to the database
that has a CCCNNNXXX ID between 6 and 9 characters, whether or not that
ID is a valid ID in a product table. Once the product is in the
database there is no easy way to remove it, and so it will occupy
permanent space at the expense of other, valid text products.

2) no valid, existing products are overwritten without a good reason to do
so. Since only a fixed number of versions of a product are retained, a
local application could cause all official versions of a product to be
lost through a number of overwrites.

At this time, products in the text database only have the time attribute of
creationtime, which is the system clock time (UTC), in UNIX ticks (seconds
since 00:00, 1/1/1970) when the product was stored in the database. This time
will normally have an offset from the valid time of the text product data
itself. The only way to determine (set) the valid time of the text product is
to read (write) it inside the text of the product.

Table 4.2.4.1-2, cont.

-80

The complete list of command line options is as follows (AFOS product syntax
is used for afosCmd and productID parameters):

-r afosCmd do a standard AFOS read from the database

-w productID write the product to the database

-t productID { productID ... } get create time of last version(s)

-A productID get all times for one productID

-rh afosCmd read data from the database with special
headers

-rd product ID a special header is inserted at the start
of every individual product, to allow
identification of each product

-v productID versions Change the number of versions to keep in
the textproductinfo table in the database

-l nnn Change all NNN products to large text. A
large text product may be 31936 bytes,
versus 2000 bytes for a standard text
product

-s -a state xxx ccc Add another ID to the SS.NNN lookup list
in the state_match table

-s -d state xxx ccc Delete an ID from the SS.NNN lookup list
in the state_match table

-s -r state Display current list for state in SS.NNN
lookup list

For backward compatibility:

read afosCmd same as -r afosCmd
write afosCmd same as -w afosCmd

Table 4.2.4.1-2, cont.

-81

4.2.8 Digital Forecast Data

The Interactive Forecast Preparation (IFP) component of AWIPS is in a state of
transition. IFP in Build 4.3 currently consists of the Interactive Computer
Worded Forecast program, which primarily uses the Informix RDBMS for storage
of digital forecast data. This is likely to change with the possible
introduction of the Interactive Forecast Preparation System (IFPS) in Build
5.x. For those reasons, this section and its subsections are deferred until
the time that the IFP software transition is settled and suitable APIs are
available to provide local applications with safe access to the IFP database.

4.2.8.1 Grids

Deferred.

4.2.8.2 Zone DFM

Deferred. This section will describe the Digital Forecast Matrix (DFM) for
forecast zones.

4.2.8.3 Station DFM

Deferred. This section will describe the DFM for forecast points.

4.2.8.4 IFP Database Access and APIs

Deferred.

4.2.9 Verification Data

Verification data for Public and Aviation (TAF) forecasts are present in AWIPS
Build 4.3. Verification of other forecast program areas is scheduled for
AWIPS Builds 5 and 6. This section and subsections are deferred.

4.2.9.1 Public

The public forecast verification data on AWIPS in Build 4.3 are the same data
as produced by the AFOS VERIFY program. Refer to Section 8.4 of the AWIPS
User’s Manual for Release 4.3, and Section 9.5 of the System Manager’s Manual
for Release 4.3. However, unlike on AFOS, the verification data on AWIPS are
stored in the Informix database. The storage of these data in Informix is
complicated, and will be described in a separate document. Once this
documentation is available, it will be referenced in Section 7 (if online) or
8 (if hard copy).

4.2.9.2 Aviation

Same as Section 4.2.9.1.

4.2.9.3 Marine

Deferred. No marine forecast verification data is available on AWIPS in Build
4.3, except for the marine verification products produced at NCEP and stored
in the AWIPS text database.

Table 4.2.4.1-2, cont.

-82

4.2.9.4 Hazardous Weather

Deferred. No hazardous weather forecast verification is available on AWIPS in
Build 4.3.

4.2.9.5 Fire Weather

Deferred. No fire weather forecast verification is available on AWIPS in
Build 4.3.

4.2.9.6 Hydrologic

Deferred. No hydrological forecast verification is available on AWIPS in
Build 4.3.

4.2.9.7 Verification Database Access and APIs

Deferred.

4.2.10 NCEP (REDBOOK) Graphics

Graphics products from NCEP provided to AWIPS are produced in the REDBOOK
format. Many of these products are being phased out in favor of providing the
raw data needed to produce them locally; however, many REDBOOK products will
continue to be produced at NCEP for the foreseeable future. All REDBOOK
products are currently displayable within D2D, and no need for use of these
graphics in local applications development is expected.

REDBOOK graphics are stored in the $FXA_DATA/ispan/graph subdirectory. The
products are stored in individual flat files, in as-received format. A file
naming convention is used to identify the individual graphics products, as
follows:

<WMO ID>.<YYYYMMDD_HHMMSS.mmm> (Brackets not part of the name)

where <WMO ID> is the WMO designator for the product, as extracted from the
WMO product header, and <YYYYMMDD_HHMMSS.mmm> is the date and time of the
receipt of the product (not the date and time of the data contained in the
product). The .mmm part is the milliseconds of the time stamp. An example
file name is:

PYMA85KWBC.19961217_120605.929

No decoding of the REDBOOK products is done to determine the data time. The
time of receipt and the WMO ID are used in AWIPS to infer the actual data
times, the list of which are known for each product.

4.3 Site-Specific Data Sets

These data sets are typically documented in the appropriate User’s Guide and
System Manager’s Manual sections. Some information may already be found in
these documents. Once all the appropriate data have been identified and their
documentation sources have been found, they will be described in the following
sections.

Table 4.2.4.1-2, cont.

-83

4.3.1 Site-Specific Static Data

Deferred.

4.3.2 Site Customization and Preference Data

Deferred.

4.3.3 Site-Specific Data Formats and Locations

Deferred.

4.3.4 Site-Specific Data Creation and Management

Deferred.

Table 4.2.4.1-2, cont.

-1

5.0 Initiation of Local Applications

A variety of mechanisms exist to launch programs on AWIPS. Six existing
mechanisms are described in the sections that follow. The preferred method
for initiating local applications has not been determined, and will probably
depend to a great extent on the frequency at which the application needs to be
run, the type of interaction that it has with the user and with AWIPS, and the
environment in which it must be run.

5.1 From a D2D Menu

Applications can be launched from a D2D menu by adding a button for the
application to one of the existing menus to the right of the D2D "Scale" menu,
or by creating a new menu in this area. This is accomplished by adding
entries to two D2D menu configuration files, which are editable ASCII text
files. A user with appropriate permissions can add or remove menu items for
applications by editing the configuration files, without needing to recompile
the D2D software for the changes to take effect. D2D acts as a shell to
launch the application executable by name, with command-line arguments. As an
example, the Volume Browser in the D2D Volume menu is actually a stand-alone
application that is initiated by D2D and brings up its own grid selection and
loading menu.

An important feature to note about applications that are launched by D2D in
this manner is that any standard input or output within the application is
connected via Unix pipes to D2D's application interface, not to the keyboard
or a terminal window. The application can send specific action requests to
D2D by writing text to standard output (for example, the Volume Browser asks
for selected grids to be loaded). The application can also receive
notifications from D2D by reading from standard input. These behaviors are
described in more detail in Chapter 11 of the WFO-Advanced Overview document
found on the FSL Home Page.

Application initiation information for D2D is in the form of a line of
delimited text which must be added to the file $FXA_HOME/data/appInfo.txt.
The format of an entry in the file appInfo.txt is:

key | label | executable | arguments | prestart | restart | one-instance

where:

! key is a unique text string that will be used as the application key
! label is the label that will appear on the D2D menu for launching the

application
! executable is the file to execute (must be located in a D2D search path)
! arguments are (obviously fixed) command line arguments for the

application
! prestart tells whether the application is started automatically each time

D2D is started
! restart tells whether D2D automatically restarts the application if it

ever terminates
! one-instance indicates whether D2D will allow only one copy of the

application to be running at one time

Table 4.2.4.1-2, cont.

-2

Example:

vb | Volume Browser... | vb | | y | y | y
mineswp | Mine Sweeper... | mine_sweeper | -l expert | n | n | y

The file $FXA_HOME/data/localization/nationalData/dataMenus.txt controls the
D2D menu layouts and the buttons contained within the menus. In order for
your application's initiation button to appear in a menu, an entry must be
added to this file for the button. The syntax for the entries in the file is
described in the file itself. The unique application key value from
appInfo.txt must be included in the entry in dataMenus.txt. This key serves
as the linkage between the menu button entry in dataMenus.txt and the
initiation instructions that are in appInfo.txt.

The executable code for the application must be placed in the search path that
D2D uses to find executable code for locally-developed applications (see
Section 2.3.4). Once the changes have been made to the two configuration
files, D2D must be restarted for the changes to appear in the menu. If
everything has been done correctly, pushing the application's button from its
menu will initiate and run the application.

5.2 From the CDE Pop-Up Menu

The Common Data Environment (CDE) setup on AWIPS provides a configurable
Pop-Up menu that is activated by positioning the mouse cursor on the desktop
background and holding down the third button on the mouse. The option is
selected by highlighting it in the menu, or on a submenu. Additional options
can be added to the menu by editing the dtwmrc file in the ~.dt subdirectory
of the login home directory. This is something that shall not be attempted in
the operational AWIPS account except by the System Manager, since an error
could result in the inability to initiate the primary AWIPS capabilities.

5.3 From CDE Icons

An application can be initiated from CDE by using the Create Action utility to
create a CDE action that initiates the program. The user can select the icon
desired for the program or create a new icon for the application, and position
the resulting Action icon in the CDE menu of choice. This capability has been
previously described in Section 2.1, and its availability is dependent on the
setup of CDE in the account under which it is run.

5.4 From the Command Line

A stand-alone application can be run from the command line of the Unix shell
in a terminal window. A terminal window is brought up from the Telnet option
in the CDE Pop-Up Menu, described above. To run the application, the user
will need to log in to the host machine on which the application will run,
under an account which has execute permission on the application's executable
file or its initiation script, and type the command that launches the
application.

Table 4.2.4.1-2, cont.

-3

Exhibit 5.5-1. Arrival Pattern for Grids

5.5 From the crontab

Any application that can be initiated from the shell (i.e., from the command
prompt) can be placed in a list file by crontab and initiated at scheduled
days and times by cron. Entries in a crontab file contain initiation time
information and a text string that corresponds to the command that initiates
the application from the UNIX shell. Access to crontab is controlled by
configuration files which specify which users can or cannot use it. All
application scheduling via crontab must be coordinated with the System
Manager, since the possibility exists of overloading the system if
applications are scheduled at the same time as AWIPS system cron jobs.

The at utility can be used to schedule an application to run only once, at a
specified time. The batch utility can be used to initiate an application as
soon as system resources permit. It should be obvious that only background
applications that can run to completion without user input should be initiated
via crontab, at, or batch.

All of at, batch, crontab, and cron are UNIX utilities, and are documented in
their respective UNIX man pages.

Care should be taken when selecting the time to run a time-scheduled
application. AWIPS currently initiates hundreds of applications in this
manner and, whenever possible, the local application crons shall not overlap
the AWIPS baseline crons that may contend for resources. An AWIPS developed
tool called “ucron” is described in Appendix 6 and can be used to graphically
map out the execution of the crons on your systems.

Also, the products received on the SBN have a relatively well-known arrival
pattern and, based on your application and its use of resources, care should
be taken to avoid heavy ingest times. The graphs in Exhibits 3.3.1 and 3.3.2
are derived from decoder logs. They show the number of received products over
the period of a day from 00Z to 00Z. The graph points represent 5-minute
averages. With these graphs one can determine the low product activity times.

Table 4.2.4.1-2, cont.

-4

Metar Decoder Number of Products

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 0
Time (Hours UTC)

N
u
m
b
e
r

Exhibit 5.5-2. Arrival Pattern for METAR Products

5.
6
HP
MC
/S
er
vi
ce
Gu
ar
d

MC
/S
er
vi
ce
Gu
ar
d is a software package which provides the mechanisms for assuring that
critical hardware and software components are continuously available in the
event of failure of a system component. For example, the AWIPS hardware
configuration has many redundant components (e.g., two DS's, AS's, FDDI
networks, Simpact CP's, etc.). Each of these hardware components serves as a
backup to the other in case of the failure of one of the two. MC/Service
Guard is set up on AWIPS to manage the hardware transition to the backup
configuration with no interruption of service.

In the same manner, critical applications which require high availability can
be configured in MC/Service Guard such that they are shut down, moved to a
different machine, or restarted in the case of hardware or software failures.
The specific actions that are taken in response to failures can be configured
in MC/Service Guard. The type of applications which should be configured
within an MC/Service Guard package are those which are critical to operations
and need to run continuously on the system. Examples of applications that
might require high availability are the data ingest software, system
monitoring software, or cron.

The MC/Service Guard software is fully documented in the HP manual Managing
MC/Service Guard. Details are beyond the scope of this document. Note that
configuration and management of MC/Service Guard is a PRC and/or System
Manager responsibility, and shall not be made available to, or attempted by,
the application developers.

The AWIPS system provides hooks (R4.3 or later) for individual sites to manage
their site-specific applications during MC/ServiceGuard failover of the DS or
AS swap packages. These hooks are in place to start/stop local site
applications (for example, similar to the way that the shefdecoder process
moves upon failover). The following site-controlled scripts that would be
executed (if present):

• /sbin/init.d/dsSITEprocesses [start|stop] # For dsswap package

Table 4.2.4.1-2, cont.

-5

• /sbin/init.d/as1SITEprocesses [start|stop] # For as1swap package
• /sbin/init.d/as2SITEprocesses [start|stop] # For as2swap package

NOTE: The above are the "actual" filenames (i.e., DO NOT substitute Site_ID
for "SITE").

MC/ServiceGuard will execute the applicable local script (if present) upon
running/halting a swap package. These local /sbin/init.d script(s) should be
developed similar to other /sbin/init.d scripts, especially when handling of
the startup and shutdown of processes. Generation and maintenance of these
three (3) /sbin/init.d files is the site's responsibility. The operational
version of all three (3) scripts shall be placed on all servers. Though only
the applicable script will be executed, this routine will simplify maintenance
and provide an implicit backup copy.

With regard to persistent processes on a platform (i.e., not related to swap
packages), the UNIX convention for bootup processes is the preferred
mechanism.

(1) Generate an /sbin/init.d file for site-specific process
(2) Create a startup link in the /sbin/rc3.d/Sxxx symbolic link (where xxx

should be > 950)
(3) Create a shutdown link in the /sbin/rc2.d/Kyyy symbolic link (where

yyy should be < 50)
(4) Symbolic link points to /sbin/init.d/zzzz (where zzzz is a properly-

developed script which accepts a [start | stop] argument.

With regard to Informix, local applications can be redirected from accessing
the ONLINE engine (on DS1) to the ONLINE_REP engine (replicated Informix
server on DS2) in one of two ways:

Method #1:
Currently, the OH applications “source” the file
/awips/hydroapps/.Apps_defaults for environment variable values. Upon
failover, the MC/ServiceGuard scripts updates this file to change
ONLINE/ONLINE_REP for the "active" Informix engine. A newly started process
could source in the correct database reference. This mechanism will not
handle failover after the application has started, unless the application
error handling was designed to re-source the environment (or at least the
INFORMIXSERVER variable) upon database access failures.

Method #2:
Some applications, including the MetarDecoder and some OH "user"
applications, have logic which utilizes the Informix "DBPATH=//ONLINE_REP"
environment variable. This variable allows the application to look for an
alternate engine, if the existing connection breaks and/or cannot be re-
established. Details on the DBPATH mechanism can be found in the Informix
Administrator's Guide, Volume 1, starting on page 25-23.

Table 4.2.4.1-2, cont.

-1

6.0 Product Dissemination

Product dissemination is the process by which products (official user
products, or other products and messages) are delivered to users outside the
local AWIPS configuration (outside the AWIPS LAN). This discussion will be
limited to dissemination of ASCII text products.

6.1 Dissemination Mechanisms

AWIPS provides three basic mechanisms for distribution and dissemination of
products: the Wide Area Network (WAN), the Local Data Acquisition and
Dissemination (LDAD) subsystem, and the Asynchronous Product Scheduler (APS).
A direct connection from AWIPS to AFOS also exists, along with software
utility to transfer products between the two systems. However, since AFOS is
slated for decommissioning, this mechanism will not be described here. Refer
to the description of handleOUP.pl in the following section for a description
of an alternate method of product distribution from AWIPS to AFOS.

WAN distribution allows products to be sent directly between AWIPS sites (WFO
to WFO, WFO to RFC and the reverse), to the NOAA Weather Wire Service (NWWS),
and to the Network Control Facility (NCF). From the NCF, products can be
routed over the SBN to all AWIPS sites, and to the NWS Telecommunications
Gateway (NWSTG). From NWSTG, products may be distributed over NOAAPORT, the
Global Telecommunications System (GTS), the AFOS communications network, back
to the SBN via the NCF, to the NWWS, to NCEP, etc.

LDAD distribution allows access to selected products by outside users,
including authorized local agency users and the general public. The only
current LDAD product dissemination method from AWIPS to LDAD to external users
is to place AWIPS text products on the LDAD Bulletin Board Service (BBS) or
into files on the LDAD Server.

APS product distribution allows text products to be routed to/from external
PCs configured on AWIPS communications port if the PC is running Bubble or a
similar program. APS supports text product dissemination from the PC to the
CRS and NWWS, and storage of text products to the AWIPS text database.

6.1.1 WAN

Distribution of products over the WAN is supported by a pair of Command Line
Interfaces CLIs, called with options and required arguments in the same manner
as a UNIX command. The CLIs can be invoked manually from command line in the
UNIX shell, from scripts, or from SYSTEM calls embedded in compiled code. The
two CLIs are called handleOUP.pl and distributeProduct, and the selection of
which one to use depends on the type of product to disseminate. These two
CLIs are referred to a wrapper utilities; that is, they provide a convenient
programmer interface to more complex utilities, and isolate the programmer
from future changes in the lower level utilities.

Note that once a product is stored in the text database (see Section 4.2.7),
it may be manually addressed and distributed over the WAN from the AWIPS Text
Workstation. This mechanism is fully described in Section 4.4 of the AWIPS
User’s Manual for Release 4.3. Since it is a manual process not initiated
directly from a program, it will not be discussed further in the AIFM.

Table 4.2.4.1-2, cont.

-2

The handleOUP.pl and distributeProduct CLI executable files are located under
the $FXA_HOME/bin directory. To use either of these CLIs, $FXA_HOME/bin must
be in the executable path in your current shell, or the fully-qualified file
name (e.g., $FXA_HOME/bin/distributeProduct) must be used to invoke the CLI.
Complete documentation for handleOUP.pl and distributeProduct, including
examples of usage, is provided in Appendix 5 in the form of unix man pages for
each CLI.

A product to be disseminated by handleOUP.pl or distributeProduct should be in
the form of an ASCII text file, complete but without the inclusion of any of
the AFOS, AWIPS, or WMO header lines or the AWIPS product identifier line (the
NNNXXX second line). The necessary header lines will be formatted and
prepended to the product upon transmission, based on its destination (AFOS or
WAN) and on the AWIPS identifier specified in the CLI calling argument list.
As an additional feature, the CLIs will also process the transmitted text (but
not the original product file) to assure that each line of text is terminated
with the <cr><cr><lf> characters expected by the NWSTG and other software.

It is important to note that for handleOUP.pl or distributeProduct to attach
the correct AFOS or WMO communications header to the product, the product
header information must be complete and correct in the afos2awips.txt file,
and the CLI must be called with the correct AWIPS ID for the product.
Otherwise, handleOUP.pl or distributeProduct will return an error status and
the product will not be able to transmitted or stored in the fxatext database.
See the handleOUP.pl man page in Appendix 5 for details and control file
locations.

A brief description of each of the CLIs and guidelines for their use is given
in the sections below.

6.1.1.1 The handleOUP interface

The handleOUP.pl CLI encapsulates several functions that need to be performed
upon dissemination of Official User Products (OUPs). Official user products
include watches, warnings, TAFs, State Forecast Products, Zone forecasts,
etc., which are distributed to the public, the media, and/or external
agencies. Official user products are all those for which there is an archive
requirement at the WFO/RFC. Specifically, handleOUP.pl can be directed to:

C store the product locally in the fxatext database,
C archive the product locally in a file
C compose and attach any or all of the WMO, AFOS, and WAN distribution headers

to the product, as needed
C distribute the product across the AWIPS WAN to the NCF, the SBN, and the

NWSTG; and/or to the NWWS uplink, and
C send the product to the local AFOS interface when AWIPS is in pre-

commissioned mode.

The handleOUP CLI does not accommodate point-to-point product distribution,
i.e., the dissemination of a product to a particular site (e.g., to a single
neighboring WFO) on the AWIPS WAN. Point-to-point distribution is provided by
distributeProduct. Product distribution from calls to the handleOUP.pl CLI is
determined by the product routing and handling tables in the NCF and the
NWSTG, and the values of the predesignated primary and backup NWWS uplink

Table 4.2.4.1-2, cont.

-3

sites specified in the file /awips/ops/data/mhs/nwwsup_dlist.data. For a
product sent to AFOS, its redistribution upon reaching AFOS is determined by
the value specified for the AFOS routing node in the call to handleOUP, and by
the internal AFOS product routing configuration.

6.1.1.2 The distributeProduct interface

The distributeProduct CLI encapsulates functions that need to be performed
upon dissemination of generic text products. The capabilities of
distributeProduct include the ability to:

C specify actions to be taken by the receiving site upon product receipt,
C enclose an ASCII or a binary file as an attachment to the product message

(not recommended, and not a capability to be abused by sending large files
over the WAN),

C compose and attach any or all of the WMO, AFOS, and WAN distribution headers
to the product, as needed,

C distribute the product to a list of one or more specific AWIPS sites (any
WFO, RFC, or National Center site on the AWIPS WAN), and

C distribute the product across the AWIPS WAN to the NCF, the SBN, and the
NWSTG; and/or to the NWWS uplink.

Both point-to-point distribution and general distribution (via the NCF, NWSTG,
SBN, and NWWS) of products are provided by distributeProduct. General product
distribution from calls to the distributeProduct CLI is determined by the
product routing and handling tables in the NCF and the NWSTG, and the values
of the predesignated primary and backup NWWS uplink sites specified in the
file /awips/ops/data/mhs/nwwsup_dlist.data. The distributeProduct CLI does
not provide a capability to send a product to the local AFOS, and no archiving
of products sent via this CLI is performed.

Products and enclosures received at the destination AWIPS site of a
distributeProduct invocation are stored in separate files located in the
directory associated with the receive handling specification, under a name
which includes the sending site ID and a message ID number (e.g., PIT-12345).
Refer to the distributeProduct man page in Appendix 5.

The actions that can be taken upon receipt of a product at a site are
specified by the action keyword (see the man page). A configuration file
contains the command lines that relate to each action keyword, and additional
action keywords and commands can be added. However, it is not allowed for a
local site to unilaterally define new actions and action keywords, since these
items must be nationally configured to be present and identical at all AWIPS
sites. If there is a need or desire for a local site to add new actions and
action keywords, a request can be submitted via the AWIPS Local Applications
Home Page (see Section 7 for URL information).

6.1.2 LDAD

LDAD is too complex and extensive to be documented in the AIFM. The reader is
referred to the detailed LDAD documentation. Setup and configuration of LDAD
and the BBS are documented in Chapter 8 of the AWIPS System Manager’s Manual
for Release 4.3. Other LDAD documentation describing the system integration
procedures for addition of new external data sources exists online on the

Table 4.2.4.1-2, cont.

-4

Internet (reference Section 7 for the URLs). As more complete LDAD
documentation becomes available, the AIFM will be updated with references and
location information where the material may be found.

6.1.3 Asynchronous Product Scheduler (APS)

The APS allows AWIPS to be configured so that specified products are sent to
the PC upon receipt and storage in the AWIPS database, and in addition, the PC
can issue one-time requests for additional products from AWIPS. Conversely,
text products can be sent to AWIPS from the PC via the APS, and APS on AWIPS
will store the product in the text database and can be configured to: 1)route
the product to the Console Replacement System (CRS; i.e., NOAA Weather Radio),
and/or 2) route the product to the NWWS. To interface with the AWIPS APS, the
remote PC requires the Bubble program, or any other application that obeys the
AFOS protocols and is software flow-enabled to communicate with APS. All the
APS software (Build 4.3) is currently present only on AWIPS, not on the PC
side. The APS is documented in Chapter 10 of the AWIPS System Manager’s
Manual for Release 4.3 (SMM), and no additional detail will be provided in
this document.

6.2 Product Archive

As mentioned in Section 6.1.1.1 for the handleOUP CLI, handleOUP automatically
archives all Official User Products transmitted via this mechanism. As
described in the handleOUP man page in Appendix 5, the OUPs with their
attached transmission headers are temporarily stored in files in the
/data/fxa/archive/OUP/scratch directory. This directory is monitored hourly,
at the end of which interval all stored products are moved to the
/data/fxa/archive/OUP/archive directory.

AS AN INTERIM MEASURE AND ONLY IF ABSOLUTELY NECESSARY, local applications
which produce text products to be archived, but which do not disseminate them
via handleOUP, can place a copy of these products in files in the
/data/fxa/archive/OUP/scratch directory. These products will then be
automatically archived to the /data/fxa/archive/OUP/archive directory and
purged from the scratch directory. Be sure that your application places write
permissions at the owner, group, and other levels on the files in the scratch
directory so that they can be moved to the archive directory by the automated
mechanism. Also, be sure to use a different file naming mechanism than
handleOUP to distinguish your local application products from those
disseminated by handleOUP and which are part of the “legal” product archive on
AWIPS. A more general archiving mechanism separate from the “legal” product
archive is under development and expected to be available to local
applications developers for AWIPS Build 5.

Table 4.2.4.1-2, cont.

-1

7.0 On-Line Resources and URLs

AWIPS Local Applications Web Site

The Meteorological Development Laboratory maintains a web site for local
application development information exchange. The Universal Resource Locator
(URL) for the AWIPS Local Applications web site is:

http://tgsv5.nws.noaa.gov/tdl/awips/

The web site contains links that will allow the users to:
C register the use of local applications and provide notifications;
C view an inventory of local applications;
C post and respond to user questions;
C report and respond to software deficiencies;
C download registered local application software and documentation;
C view the AWIPS Applications Integration Framework Manual;
C view the AWIPS Local Application Management Policy;
C view approved local application waivers; and
C view LAWG monthly conference call minutes.

Internet

Many additional resources of interest to local application development are
available through the Internet. Access to these resources is not available
from AWIPS machines, which are isolated from the Internet inside the AWIPS
network. Information accessed from the Internet must be obtained via a
machine outside the AWIPS network and saved to disk. To get the material to
AWIPS, it must be copied to a physical medium (tape or removable disk) and
loaded into AWIPS, or it must be transferred through a safe firewall from the
non-AWIPS machine to an AWIPS machine. All transfers of external information
onto AWIPS must be coordinated with the local System Manager, who has
responsibility for system security and integrity.

Since information on the Internet changes frequently, URLs related to items in
the AIFM will not be listed in the AIFM. Internet-accessible URLs of interest
to local applications development are maintained on the ‘Links’ page of the
AWIPS Local Applications web site. Links to selected web pages from the
Internet which are of wide interest or importance will be available. These
will likely include:

 ! NetCDF User's Guide
 ! FX-ALPHA C and C++ Coding Conventions
 ! LDAD System Manager’s Manual, User Guide, and programming guides

Table 4.2.4.1-2, cont.

-1

8.0 References

Hewlett-Packard Company, 1995: HP Process Resource Manager User's Guide. HP
Part No. B3834-90002, Hewlett-Packard Company, 123 pp.

 , 1995a: Managing MC/Service Guard. HP Part No. B3936-90003, Hewlett-
Packard Company, 146 pp.

 , 1992b: HP FORTRAN/9000 Programmer's Reference, Volume 1 and 2. HP Part
No. B2408-90010, Hewlett-Packard Company, 865 pp.

 , 1992c: HP-UX Reference, Release 9.0, Volume 1. HP Part No.
B2355-90033, Hewlett-Packard Company, 940 pp.

 , 1992d: Programming on HP-UX. HP Part No. B2355-90026, Hewlett-Packard
Company, 412 pp.

 , 1992e: Using HP-UX. HP Part No. B2910-90001, Hewlett-Packard Company,
302 pp.

Litton/PRC Incorporated, 2000: System/Subsystem Design Description.
Available from AWIPS Program Office, NOAA, U.S. Department of Commerce.

 , 2000: System Manager’s Manual for Release 4.3. Available from AWIPS
Program Office, NOAA, U.S. Department of Commerce.

National Weather Service, 2000: AWIPS Local Applications Policy.
National Oceanographic and Atmospheric Administration, U.S. Department of
Commerce, 4pp.

National Weather Service, 2000: AWIPS Local Application Implementation Plan.
National Oceanographic and Atmospheric Administration, U.S. Department of
Commerce, 3pp.

Systems Interfaces and Headers, Volume 2 of the X/Open Portability Guide,
Issue 4 (referenced in Section 3.1 of AIFM)

Table 4.2.4.1-2, cont.

-1

9.0 Acronyms and Abbreviations

The following acronyms and abbreviations are used in this document:

ADAP²T AWIPS Data Analysis and Product Preparation Tools
AIFM Application Integration Framework Manual
AFOS Automation of Field Operations and Services
ALERT Automated Local Evaluation in Real Time
ANSI American National Standards Institute
API Application Programmer Interface
APS Asynchronous Product Scheduler
AS Applications Server
ASCII American Standard Code for Information Interchange
ASOS Automated Surface Observing System
AWIPS Advanced Weather Interactive Processing System
BCS Baseline Configuration System
BLOB Binary Large Object
CDE Common Desktop Environment
CD-ROM Compact Disc-Read Only Memory
CDoT Colorado Department of Transportation
CLI Command Line Interface
CM Configuration Management
CO Communications CSCI
CONUS Continental United States [Area]
COTS Commercial Off-the-Shelf
CP Communications Processor
CPU Central Processing Unit
CSC Computer Software Component
CSCI Computer Software Configuration Item
D2D [WFO-Advanced] Display 2-Dimensional
DAR3E Denver AWIPS Risk Reduction and Requirements Evaluation
DAT Digital Audio Tape
DB Database
DC Device Coordinates
DDT Design, Development, and Testing [Team]
DFM Digital Forecast Matrix
DM Data Management CSCI
DS Data Server
ESQL Embedded Structured Query Language
FAC File Access Controller
FDDI Fiber Distributed Data Interface
FMH-1 Federal Meteorological Handbook, Volume 1
FSL [NOAA] Forecast Systems Laboratory
GAAB Graphic Alphanumeric Attributes Block
GB Gigabyte
GIS Geographic Information System
GMT Greenwich Mean Time (see UTC)
GOES Geosynchronous Operational Environmental Satellite
GRIB Gridded Binary [Data Format]
GTS Global Telecommunications Network
GUI Graphical User Interface
HI Human Computer Interface CSCI
HM Hydrometeorological Applications CSCI
HP Hewlett-Packard [Corporation]

Table 4.2.4.1-2, cont.

-2

HWCI Hardware Configuration Item
ICD Interface Control Document
ICWF Interactive Computer-Worded Forecast [Application]
ID, id Identifier
IFP Interactive Forecast Preparation
IGC Interactive Graphics Controller
km kilometers
LAMP Local AWIPS MOS Program
LAN Local Area Network
LDAD Local Data Acquisition and Dissemination [System]
LFM Limited Fine Mesh [Model]
MB Megabyte, Millibar
Mbps Megabits per second
MC Monitor and Control CSCI
METAR Aviation Routine Weather Report
MHS Message Handling System
MOS Model Output Statistics
NCEP National Centers for Environmental Prediction
NCF Network Control Facility
NESDIS National Environmental Satellite, Data and Information

Service
NetCDF Network Common Data Form
NEXRAD Next Generation Weather Radar
NFS Network File System
NLDN National Lightning Detection Network
NM Nautical Mile
NOAA National Oceanic and Atmospheric Administration
NWS National Weather Service
NWSRFS NWS River Forecasting System
NWSTG NWS Telecommunications Gateway
OI Object Interface
OS Operating System
OSF [NEXRAD] Operational Support Facility
OUP Official User Product
PDB Product Description Block
PIL [AFOS] Product Identifier Label
PSB Product Symbology Block
POSIX Portable Operating System Interface for UNIX
PRC Litton/PRC, Incorporated
PRM [HP] Process Resource Manager
PUP Principal User Processor
RAOB Rawinsonde Observation
RCS Revision Control System
RDBMS Relational Data Base Management System
RGB Red-Green-Blue [Color Components]
RLE Run Length Encoded
RPG Radar Product Generator
RSU Remote Sensing Units
SBN Satellite Broadcast Network
SCCS Source Code Control System
SDN Software Development Notebook
SPECI Special METAR
SQL Structured Query Language
SS System Support CSCI

Table 4.2.4.1-2, cont.

-3

TAB Tabular Alphanumerics Block
TAF Aviation Terminal Forecast
TBD To Be Determined
Tcl/Tk Tool command language / Tool kit
TDL [NOAA/NWS] Meteorological Development Laboratory
TLCSC Top-Level Computer Software Component
UI User Interface
URL Universal Resource Locator
UTC Universal Time, Coordinated (see GMT)
VAG [NCEP] Value-Added Grids
WAN Wide Area Network [AWIPS Communications Network]
WFOA WFO-Advanced [System]
WFO Weather Forecast Office
WHFS WFO Hydrometeorological Forecasting System
WMO World Meteorological Organization
WS Workstation
WSR-88D Weather Surveillance Radar, 1988 Doppler
XT X-Terminal

Table 4.2.4.1-2, cont.

A1-1

Appendix 1

NetCDF API examples for reading point data files

This section describes methods for reading and writing netCDF point data
files, using METAR files as an example.

Two utilities included with netCDF convert between binary netCDF files and a
text representation of netCDF files in the CDL language. The tools ncgen and
ncdump are fully documented in the NetCDF User's Guide. Since the output of
one utility may be used as the input to the other, they may be considered
inverses.

The ncgen routine will create a netCDF file from a CDL file. Additionally, it
will generate either C or FORTRAN source code to create a netCDF file if given
the proper flags. However, the source is useful only for relatively small CDL
files since all the data is included in variable initialization in the
generated program. Programs in C and FORTRAN were created from the metar.cdl
file below, and there were 298 lines for the C code, and 401 lines for the
FORTRAN code.

The routine ncdump produces the CDL text representation of a netCDF file on
standard output. It may also be used to browse netCDF files for information
about the dimensions, variables, and attributes, and to display the values of
the data.

The UNIX syntax for invoking ncgen and ncdump is:

. ncgen [-b] [-o netcdf_file] [-c] [-f] [-n] cdl_file

. ncdump [-c | -h] [-v var1,...], [-b lang] [-f lang] [-l
len]
. [-p float_digits[,double_digits]] [-n name]
[input_file]

The use of the flags is explained in the NetCDF User's Guide.

The CDL file for the METAR data is as follows:

netcdf metar
{
dimensions:

 maxAutoStaLen = 6; // Max automated station type length
 maxAutoWeather = 5; // Max num of auto weather codes
 maxAutoWeaLen = 12; // Max num of auto weather codes
 maxRepLen = 6; // Max report type length
 maxMETARLen = 256; // Max undecoded METAR length
 maxSkyCover = 6; // Max num of sky cover groups
 maxSkyLen = 8; // Max length of sky cover word
 maxStaNamLen = 5; // Station name length
 maxWeatherNum = 5; // Max num of present weather codes

Table 4.2.4.1-2, cont.

A1-2

 maxWeatherLen = 25;
 recNum = UNLIMITED;

variables:
 // METAR ORIGIN INFO

 // This variable does not appear in METARs.
 long wmoId(recNum);
 wmoId:long_name = "numeric WMO identification";
 wmoId:_FillValue = -2147483647;
 wmoId:valid_range = 1, 89999;
 wmoId:reference = "station table";

 char stationName(recNum, maxStaNamLen);
 stationName:long_name = "alphanumeric station identification";
 stationName:reference = "station table";

 // This variable does not appear in METARs.
 float latitude(recNum);
 latitude:long_name = "latitude";
 latitude:units = "degree_north";
 latitude:_FillValue = 3.40282346e+38f;
 latitude:reference = "station table";

 // This variable does not appear in METARs.
 float longitude(recNum);
 longitude:long_name = "longitude";
 longitude:units = "degree_east";
 longitude:_FillValue = 3.40282346e+38f;
 longitude:reference = "station table";

 // This variable does not appear in METARs.
 float elevation(recNum);
 elevation:long_name = "elevation";
 elevation:units = "meter";
 elevation:_FillValue = 3.40282346e+38f;
 elevation:reference = "station table";

 // METAR DATE AND TIME
 double timeObs(recNum);
 timeObs:long_name = "time of observation";
 timeObs:units = "seconds since 1-1-1970";
 timeObs:_FillValue = 1.797693134862315700e+308;

 // This variable does not appear in METARs.
 double timeNominal(recNum);
 timeNominal:long_name = "METAR hour";
 timeNominal:units = "seconds since 1-1-1970";
 timeNominal:_FillValue = 1.797693134862315700e+308;

 // REPORT TYPE
 char reportType(recNum, maxRepLen);
 reportType:long_name = "report type";
 reportType:reference = "FMH-1";

Table 4.2.4.1-2, cont.

A1-3

 // AUTO STATION TYPE
 char autoStationType(recNum, maxAutoStaLen);
 autoStationType:long_name = "automated station type";
 autoStationType:reference = "FMH-1";

 // SKY COVER GROUP
 char skyCover(recNum, maxSkyCover, maxSkyLen);
 skyCover:long_name = "sky cover";
 skyCover:reference = "FMH-1";

 float skyLayerBase(recNum, maxSkyCover);
 skyLayerBase:long_name = "sky cover layer base";
 skyLayerBase:units = "meter";
 skyLayerBase:_FillValue = 3.40282346e+38f;
 skyLayerBase:valid_min = 0;

 // VISIBILITY GROUP
 float visibility(recNum);
 visibility:long_name = "visibility";
 visibility:units = "meter";
 visibility:_FillValue = 3.40282346e+38f;
 visibility:valid_min = 0.0;

 // PRESENT WEATHER
 char presWeather(recNum, maxWeatherLen);
 presWeather:long_name = "present weather";
 presWeather:reference = "FMH-1";

 // SEA LEVEL PRESSURE
 float seaLevelPress(recNum);
 seaLevelPress:long_name = "sea level pressure";
 seaLevelPress:units = "pascal";
 seaLevelPress:_FillValue = 3.40282346e+38f;

 // TEMPERATURE
 float temperature(recNum);
 temperature:long_name = "temperature";
 temperature:units = "kelvin";
 temperature:_FillValue = 3.40282346e+38f;

 // TEMPERATURE TO TENTHS
 float tempFromTenths(recNum);
 tempFromTenths:long_name = "temperature from tenths of a degree Celsius";
 tempFromTenths:units = "kelvin";
 tempFromTenths:_FillValue = 3.40282346e+38f;

 // DEWPOINT
 float dewpoint(recNum);
 dewpoint:long_name = "dewpoint";
 dewpoint:units = "kelvin";
 dewpoint:_FillValue = 3.40282346e+38f;

 // DEWPOINT TO TENTHS

Table 4.2.4.1-2, cont.

A1-4

 float dpFromTenths(recNum);
 dpFromTenths:long_name = "dewpoint from tenths of a degree Celsius";
 dpFromTenths:units = "kelvin";
 dpFromTenths:_FillValue = 3.40282346e+38f;

 // WIND GROUP
 float windDir(recNum);
 windDir:long_name = "wind direction";
 windDir:units = "degree";
 windDir:_FillValue = 3.40282346e+38f;
 float windSpeed(recNum);
 windSpeed:long_name = "wind speed";
 windSpeed:units = "meter/sec";
 windSpeed:_FillValue = 3.40282346e+38f;
 windSpeed:valid_min = 0;
 float windGust(recNum);
 windGust:long_name = "wind gust";
 windGust:units = "meter/sec";
 windGust:_FillValue = 3.40282346e+38f;
 windGust:valid_min = 0;

 // ALTIMETER
 float altimeter(recNum);
 altimeter:long_name = "altimeter setting";
 altimeter:units = "pascal";
 altimeter:_FillValue = 3.40282346e+38f;
 altimeter:valid_min = 0.0;

 // 24 HOUR TEMPERATURE
 float minTemp24Hour(recNum);
 minTemp24Hour:long_name = "24 hour min temperature";
 minTemp24Hour:units = "kelvin";
 minTemp24Hour:_FillValue = 3.40282346e+38f;
 float maxTemp24Hour(recNum);
 maxTemp24Hour:long_name = "24 hour max temperature";
 maxTemp24Hour:units = "kelvin";
 maxTemp24Hour:_FillValue = 3.40282346e+38f;

 // 1 HOUR PRECIP
 float precip1Hour(recNum);
 precip1Hour:long_name = "1 hour precipitation";
 precip1Hour:units = "meter";
 precip1Hour:_FillValue = 3.40282346e+38f;
 precip1Hour:valid_min = 0.0;

 // 3 HOUR PRECIP
 float precip3Hour(recNum);
 precip3Hour:long_name = "3 hour precipitation";
 precip3Hour:units = "meter";
 precip3Hour:_FillValue = 3.40282346e+38f;
 precip3Hour:valid_min = 0.0;

 // 6 HOUR PRECIP
 float precip6Hour(recNum);

Table 4.2.4.1-2, cont.

A1-5

 precip6Hour:long_name = "6 hour precipitation";
 precip6Hour:units = "meter";
 precip6Hour:_FillValue = 3.40282346e+38f;
 precip6Hour:valid_min = 0.0;

 // 24 HOUR PRECIP
 float precip24Hour(recNum);
 precip24Hour:long_name = "24 hour precipitation";
 precip24Hour:units = "meter";
 precip24Hour:_FillValue = 3.40282346e+38f;
 precip24Hour:valid_min = 0.0;

 // 3 HOUR PRESSURE CHANGE GROUP
 short pressChangeChar(recNum);
 pressChangeChar:long_name = "character of pressure change";
 pressChangeChar:_FillValue = -32767s;
 pressChangeChar:reference = "FMH-1";

 float pressChange3Hour(recNum);
 pressChange3Hour:long_name = "3 hour pressure change";
 pressChange3Hour:units = "pascal";
 pressChange3Hour:_FillValue = 3.40282346e+38f;
 pressChange3Hour:valid_min = 0.0;

 // CORRECTION FLAG
 long correction(recNum);
 correction:long_name = "corrected METAR indicator";
 correction:_FillValue = -2147483647;

 // RAW METAR MESSAGE
 char rawMETAR(recNum, maxMETARLen);
 rawMETAR:long_name = "raw METAR message";

 // GLOBAL ATTRIBUTES
 //:title = "METAR - Aviation Routine Weather Report";
}

A program to generate FORTRAN code that reads any netCDF file may be
downloaded from the Unidata web site. The program gennet.f, written by Barry
Schwartz, is found at ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib. After
the program asks the user for the name of a netCDF file to read, it opens that
file and gets information on the variables and their dimensions with netCDF
calls. It then generates a FORTRAN program (readnet.f) that will read that
netCDF file and any other file of that data type. The user only has to write
FORTRAN statements to print the data or to pass the data to another program.

To compile the program on a UNIX system, type:

 f77 +E6 gennet.f /usr/local/netcdf/lib/libnetcdf.a

Table 4.2.4.1-2, cont.

A1-6

The program gennet.f was compiled and run with a METAR file named
19970508_1200. The resulting program is listed below, and should read any
AWIPS METAR netCDF file.

C FORTRAN TEMPLATE FOR FILE= 19970508_1200
 PARAMETER (NVARS=32) !NUMBER OF VARIABLES
 PARAMETER (NREC= 2157) !CHANGE THIS TO GENERALIZE
C VARIABLE IDS RUN SEQUENTIALLY FROM 1 TO NVARS= 32
 INTEGER*4 RCODE
 INTEGER*4 RECDIM
 CHARACTER*50 long_name(nvars)
 CHARACTER*50 name(100)
C ****VARIABLES FOR THIS NETCDF FILE****
C
 INTEGER*4 wmoId (NREC)
 CHARACTER*1 stationName (5,NREC)
 REAL*4 latitude (NREC)
 REAL*4 longitude (NREC)
 REAL*4 elevation (NREC)
 REAL*8 timeObs (NREC)
 REAL*8 timeNominal (NREC)
 CHARACTER*1 reportType (6,NREC)
 CHARACTER*1 autoStationType (6,NREC)
 CHARACTER*1 skyCover (8, 6,NREC)
 REAL*4 skyLayerBase (6,NREC)
 REAL*4 visibility (NREC)
 CHARACTER*1 presWeather (25,NREC)
 REAL*4 seaLevelPress (NREC)
 REAL*4 temperature (NREC)
 REAL*4 tempFromTenths (NREC)
 REAL*4 dewpoint (NREC)
 REAL*4 dpFromTenths (NREC)
 REAL*4 windDir (NREC)
 REAL*4 windSpeed (NREC)
 REAL*4 windGust (NREC)
 REAL*4 altimeter (NREC)
 REAL*4 minTemp24Hour (NREC)
 REAL*4 maxTemp24Hour (NREC)
 REAL*4 precip1Hour (NREC)
 REAL*4 precip3Hour (NREC)
 REAL*4 precip6Hour (NREC)
 REAL*4 precip24Hour (NREC)
 INTEGER*2 pressChangeChar (NREC)
 REAL*4 pressChange3Hour (NREC)
 INTEGER*4 correction (NREC)
 CHARACTER*1 rawMETAR (256,NREC)
C*************************************
 character*80 input_file
 INTEGER*4 START(10)
 INTEGER*4 COUNT(10)
 INTEGER VDIMS(10) !ALLOW UP TO 10 DIMENSIONS
 CHARACTER*31 DUMMY
C

Table 4.2.4.1-2, cont.

A1-7

C LONG NAMES FOR EACH VARIABLE
C
 data long_name/
 *'WMO numeric station ID ',
 *'Alphanumeric station name ',
 *'latitude ',
 *'longitude ',
 *'elevation ',
 *'time of observation ',
 *'METAR hour ',
 *'Report type ',
 *'Automated station type ',
 *'Sky cover ',
 *'Sky cover layer base ',
 *'visibility ',
 *'Present weather ',
 *'Sea level pressure ',
 *'temperature ',
 *'temperature from tenths of a degree Celsius ',
 *'dewpoint ',
 *'dewpoint from tenths of a degree Celsius ',
 *'Wind direction ',
 *'Wind speed ',
 *'Wind gust ',
 *'Altimeter setting ',
 *'24 hour min temperature ',
 *'24 hour max temperature ',
 *'1 hour precip ',
 *'3 hour precip ',
 *'6 hour precip ',
 *'24 hour precip ',
 *'Character of pressure change ',
 *'3 hour pressure change ',
 *'Corrected METAR indicator ',
 *'Raw METAR message '/
C
 write(6,1)
 1 format(' enter your input file')
 read(5,2) input_file
 2 format(a80)
 ilen=index(input_file,' ')
 ncid=ncopn(input_file(1:ilen-1),0,rcode)
 CALL NCINQ(NCID,NDIMS,NVARS,NGATTS,RECDIM,RCODE)
 CALL NCDINQ(NCID,RECDIM,DUMMY,NRECS,RCODE)
C !NRECS! NOW CONTAINS NUM RECORDS FOR THIS FILE
C
C statements to fill wmoId
C
 ivarid = ncvid(ncid,'wmoId ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 10 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE

Table 4.2.4.1-2, cont.

A1-8

 START(J)=1
 COUNT(J)=NDSIZE
 10 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +wmoId ,RCODE)
C
C statements to fill stationName
C
 ivarid = ncvid(ncid,'stationName ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 20 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 20 CONTINUE
 CALL NCVGTC(NCID,ivarid,START,COUNT,
 +stationName ,LENSTR,RCODE)
C
C statements to fill latitude
C
 ivarid = ncvid(ncid,'latitude ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 30 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 30 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +latitude ,RCODE)
C
C statements to fill longitude
C
 ivarid = ncvid(ncid,'longitude ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 40 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 40 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +longitude ,RCODE)
C
C statements to fill elevation
C
 ivarid = ncvid(ncid,'elevation ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 50 J=1,NVDIM

Table 4.2.4.1-2, cont.

A1-9

 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 50 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +elevation ,RCODE)
C
C statements to fill timeObs
C
 ivarid = ncvid(ncid,'timeObs ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 60 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 60 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +timeObs ,RCODE)
C
C statements to fill timeNominal
C
 ivarid = ncvid(ncid,'timeNominal ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 70 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 70 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +timeNominal ,RCODE)
C
C statements to fill reportType
C
 ivarid = ncvid(ncid,'reportType ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 80 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 80 CONTINUE
 CALL NCVGTC(NCID,ivarid,START,COUNT,
 +reportType ,LENSTR,RCODE)
C
C statements to fill autoStationType
C
 ivarid = ncvid(ncid,'autoStationType ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)

Table 4.2.4.1-2, cont.

A1-10

 LENSTR=1
 DO 90 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 90 CONTINUE
 CALL NCVGTC(NCID,ivarid,START,COUNT,
 +autoStationType ,LENSTR,RCODE)
C
C statements to fill skyCover
C
 ivarid = ncvid(ncid,'skyCover ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 100 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 100 CONTINUE
 CALL NCVGTC(NCID,ivarid,START,COUNT,
 +skyCover ,LENSTR,RCODE)
C
C statements to fill skyLayerBase
C
 ivarid = ncvid(ncid,'skyLayerBase ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 110 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 110 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +skyLayerBase ,RCODE)
C
C statements to fill visibility
C
 ivarid = ncvid(ncid,'visibility ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 120 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 120 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +visibility ,RCODE)
C
C statements to fill presWeather
C

Table 4.2.4.1-2, cont.

A1-11

 ivarid = ncvid(ncid,'presWeather ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 130 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 130 CONTINUE
 CALL NCVGTC(NCID,ivarid,START,COUNT,
 +presWeather ,LENSTR,RCODE)
C
C statements to fill seaLevelPress
C
 ivarid = ncvid(ncid,'seaLevelPress ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 140 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 140 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +seaLevelPress ,RCODE)
C
C statements to fill temperature
C
 ivarid = ncvid(ncid,'temperature ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 150 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 150 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +temperature ,RCODE)
C
C statements to fill tempFromTenths
C
 ivarid = ncvid(ncid,'tempFromTenths ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 160 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 160 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +tempFromTenths ,RCODE)
C

Table 4.2.4.1-2, cont.

A1-12

C statements to fill dewpoint
C
 ivarid = ncvid(ncid,'dewpoint ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 170 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 170 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +dewpoint ,RCODE)
C
C statements to fill dpFromTenths
C
 ivarid = ncvid(ncid,'dpFromTenths ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 180 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 180 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +dpFromTenths ,RCODE)
C
C statements to fill windDir
C
 ivarid = ncvid(ncid,'windDir ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 190 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 190 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +windDir ,RCODE)
C
C statements to fill windSpeed
C
 ivarid = ncvid(ncid,'windSpeed ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 200 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 200 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,

Table 4.2.4.1-2, cont.

A1-13

 +windSpeed ,RCODE)
C
C statements to fill windGust
C
 ivarid = ncvid(ncid,'windGust ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 210 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 210 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +windGust ,RCODE)
C
C statements to fill altimeter
C
 ivarid = ncvid(ncid,'altimeter ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 220 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 220 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +altimeter ,RCODE)
C
C statements to fill minTemp24Hour
C
 ivarid = ncvid(ncid,'minTemp24Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 230 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 230 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +minTemp24Hour ,RCODE)
C
C statements to fill maxTemp24Hour
C
 ivarid = ncvid(ncid,'maxTemp24Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 240 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE

Table 4.2.4.1-2, cont.

A1-14

 240 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +maxTemp24Hour ,RCODE)
C
C statements to fill precip1Hour
C
 ivarid = ncvid(ncid,'precip1Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 250 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 250 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +precip1Hour ,RCODE)
C
C statements to fill precip3Hour
C
 ivarid = ncvid(ncid,'precip3Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 260 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 260 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +precip3Hour ,RCODE)
C
C statements to fill precip6Hour
C
 ivarid = ncvid(ncid,'precip6Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 270 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 270 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +precip6Hour ,RCODE)
C
C statements to fill precip24Hour
C
 ivarid = ncvid(ncid,'precip24Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 280 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE

Table 4.2.4.1-2, cont.

A1-15

 START(J)=1
 COUNT(J)=NDSIZE
 280 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +precip24Hour ,RCODE)
C
C statements to fill pressChangeChar
C
 ivarid = ncvid(ncid,'pressChangeChar ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 290 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 290 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +pressChangeChar ,RCODE)
C
C statements to fill pressChange3Hour
C
 ivarid = ncvid(ncid,'pressChange3Hour ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 300 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 300 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +pressChange3Hour ,RCODE)
C
C statements to fill correction
C
 ivarid = ncvid(ncid,'correction ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 310 J=1,NVDIM
 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 310 CONTINUE
 CALL NCVGT(NCID,ivarid,START,COUNT,
 +correction ,RCODE)
C
C statements to fill rawMETAR
C
 ivarid = ncvid(ncid,'rawMETAR ',rcode)
 CALL NCVINQ(NCID,ivarid,DUMMY,NTP,NVDIM,VDIMS,NVS,RCODE)
 LENSTR=1
 DO 320 J=1,NVDIM

Table 4.2.4.1-2, cont.

A1-16

 CALL NCDINQ(NCID,VDIMS(J),DUMMY,NDSIZE,RCODE)
 LENSTR=LENSTR*NDSIZE
 START(J)=1
 COUNT(J)=NDSIZE
 320 CONTINUE
 CALL NCVGTC(NCID,ivarid,START,COUNT,
 +rawMETAR ,LENSTR,RCODE)

C
C following code: checks output code code against current input
C file
C
C
 call ncinq(ncid,ndims,nvarsc,ngatts,nrecdim,rcode)
 if(nvarsc.ne.nvars) write(6,340)
 340 format('number of variables has changed')
C
 CALL NCCLOS(NCID,RCODE)
C
C
C HERE IS WHERE YOU WRITE STATEMENTS TO USE THE DATA

C
 STOP
 END

Since this generated program does not write out data values, it was re-written
as a subroutine so that any program might access the METAR data values with an
API. At the same time the subroutine was reorganized and rewritten, to the
extent possible, according to the TDL FORTRAN Coding Guidelines (see
Attachment 2 of the AIFM). Exceptions to the TDL FORTRAN capitalization rules
were required to integrate with the NetCDF routines. This routine was tested
against ncdump and produced the same results. The code for the manually-
revised routine is as follows:

 SUBROUTINE RDMETAR(CFILE,NREC,wmoId,stationName,latitude,
 1 longitude,elevation,timeObs,timeNominal,reportType,
 2 autoStationType,skyCover,skyLayerBase,visibility,
 3 presWeather,seaLevelPress,temperature,tempFromTenths,
 4 dewpoint,dpFromTenths,windDir,windSpeed,windGust,
 5 altimeter,minTemp24Hour,maxTemp24Hour,precip1Hour,
 6 precip3Hour,precip6Hour,precip24Hour,pressChangeChar,
 7 pressChange3Hour,correction,rawMETAR,NCODE)
C
C MAY 1997 PEACHEY GSC HP
C JULY 1999 MORRIS GSC HP
C CHANGED pressChange3hour TO REAL FROM INTEGER
C
C PURPOSE
C THIS ROUTINE RETURNS ALL THE VARIABLE VALUES IN A
C METAR NETCDF FILE GIVEN THE FILE NAME.
C

Table 4.2.4.1-2, cont.

A1-17

C DATA SET USE
C CFILE - NAME OF METAR NETCDF FILE (INPUT)
C
C VARIABLES
C CFILE = METAR NETCDF FILE TO PROCESS (INPUT)
C (CHARACTER*80)
C NREC = NUMBER OF RECORDS IN THE FILE (INPUT)
C wmoId(NREC) = WMO NUMERIC STATION ID (OUTPUT)
C stationName(5,NREC) = STATION NAME (OUTPUT) (CHARACTER*1)
C latitude(NREC) = LATITUDE (OUTPUT)
C longitude(NREC) = LONGITUDE (OUTPUT)
C elevation(NREC) = ELEVATION (OUTPUT)
C timeObs(NREC) = TIME OF OBSERVATION (OUTPUT) (REAL*8)
C timeNominal(NREC) = METAR HOUR (OUTPUT) (REAL*8)
C reportType(6,NREC) = REPORT TYPE (OUTPUT) (CHARACTER*1)
C autoStationType(6,NREC)
C = AUTOMATED STATION TYPE (OUTPUT) (CHARACTER*1)
C skyCover(8,6,NREC) = SKY COVER (OUTPUT) (CHARACTER*1)
C skyLayerBase(6,NREC)
C = SKY COVER LAYER BASE (OUTPUT)
C visibility(NREC) = VISIBILITY (OUTPUT)
C presWeather(25,NREC)
C = PRESENT WEATHER (OUTPUT) (CHARACTER*1)
C seaLevelPress(NREC) = SEA LEVEL PRESSURE (OUTPUT)
C temperature(NREC) = TEMPERATURE (OUTPUT)
C tempFromTenths(NREC)
C = TEMPERATURE FROM TENTHS OF A DEGREE C (OUTPUT)
C dewpoint(NREC) = DEWPOINT (OUTPUT)
C dpFromTenths(NREC) = DEWPOINT FROM TENTHS OF A DEGREE C (OUTPUT)
C windDir(NREC) = WIND DIRECTION (OUTPUT)
C windSpeed(NREC) = WIND SPEED (OUTPUT)
C windGust(NREC) = WIND GUST (OUTPUT)
C altimeter(NREC) = ALTIMETER SETTING (OUTPUT)
C minTemp24Hour(NREC) = 24 HOUR MIN TEMPERATURE (OUTPUT)
C maxTemp24Hour(NREC) = 24 HOUR MAX TEMPERATURE (OUTPUT)
C precip1Hour(NREC) = 1 HOUR PRECIP (OUTPUT)
C precip3Hour(NREC) = 3 HOUR PRECIP (OUTPUT)
C precip6Hour(NREC) = 6 HOUR PRECIP (OUTPUT)
C precip24Hour(NREC) = 24 HOUR PRECIP (OUTPUT)
C pressChangeChar(NREC)
C = CHARACTER OF PRESSURE CHANGE (OUTPUT)
C pressChange3Hour(NREC)
C = 3 HR. PRESSURE CHANGE (OUTPUT)
C correction(NREC) = CORRECTED METAR INDICATOR (OUTPUT)
C rawMETAR(256,NREC) = RAW METAR MESSAGE (OUTPUT)
C NCODE = NETCDF ERROR MESSAGE (OUTPUT)
C
C CDUMMY = RETUNED VARIABLE NAME (INTERNAL)
C ICNT(10) = VECTOR OF NUMBER OF INDICES SELECTED ALONG EACH
C DIMENSION (INTERNAL)
C ILEN = LENGTH OF FILE NAME (INTERNAL)
C ISTART(10) = INDICES IN VARIABLE WHERE FIRST OF DATA
C VALUES READ (INTERNAL)
C IVARID = VARIABLE ID (INTERNAL)

Table 4.2.4.1-2, cont.

A1-18

C LENSTR = LENGTH OF STRING (INTERNAL)
C NCID = NETCDF ID (INTERNAL)
C NDIMS = RETURNED NUMBER OF DIMENSIONS FOR NETCDF FILE
C (INTERNAL)
C NDSIZE = SIZE OF DIMENSION (INTERNAL)
C NGATTS = RETURNED NUMBER OF GLOBAL ATTRIBUTES FOR
C NETCDF FILE (INTERNAL)
C NRCDIM = RETURNED ID OF THE UNLIMITED DIMENSION
C FOR THE NETCDF FILE (INTERNAL)
C NTP = RETURNED VARIABLE TYPE (INTERNAL)
C NVARSC = RETURNED NUMBER OF VARIABLES FOR NETCDF FILE
C (INTERNAL)
C NVDIM = NUMBER OF DIMENSIONS FOR VARIABLE (INTERNAL)
C NVDIMS(10) = VECTOR OF NVDIM DIMENSION IDS CORRESPONDING
C TO VARIABLE DIMENSIONS (INTERNAL)
C NVS = NUMBER OF VARIABLE ATTRIBUTES (INTERNAL)
C
C ROUTINES CALLED
C NCOPN, NCINQ, NCDINQ, NCVINQ, NCVID, NCVGT, NCVGTC
C
C***
C
C DEFINE NUMBER OF VARIABLES
 PARAMETER (NVARS=32)
C
 CHARACTER*80 CFILE
 CHARACTER*1 stationName(5,NREC)
 CHARACTER*1 reportType(6,NREC), autoStationType(6,NREC)
 CHARACTER*1 skyCover(8,6,NREC), presWeather(25,NREC)
 CHARACTER*1 rawMETAR(256,NREC)
 CHARACTER*31 CDUMMY
C
 INTEGER NREC, wmoId(NREC), correction(NREC), NCODE
 INTEGER pressChangeChar(NREC)
 INTEGER ISTART(10), ICNT(10), NVDIMS(10), NRCDIM, LENSTR
 INTEGER NCID, NDIMS, NGATTS, NTP, NVS, IVARID, ILEN, NVARSC
 INTEGER NVDIM, NDSIZE
C
 REAL latitude(NREC), longitude(NREC), elevation(NREC)
 REAL*8 timeObs(NREC), timeNominal(NREC)
 REAL skyLayerBase(6,NREC), visibility(NREC)
 REAL seaLevelPress(NREC), temperature(NREC)
 REAL tempFromTenths(NREC), dewpoint(NREC)
 REAL dpFromTenths(NREC), windDir(NREC), windSpeed(NREC)
 REAL windGust(NREC), altimeter(NREC)
 REAL minTemp24Hour(NREC), maxTemp24Hour(NREC)
 REAL precip1Hour(NREC), precip3Hour(NREC)
 REAL precip6Hour(NREC), precip24Hour(NREC)
 REAL pressChange3Hour(NREC)
C
C***
C
 ILEN=INDEX(CFILE,' ')
 NCID=NCOPN(CFILE(1:ILEN-1),0,NCODE)

Table 4.2.4.1-2, cont.

A1-19

 CALL NCINQ(NCID,NDIMS,NVARS,NGATTS,NRCDIM,NCODE)
 CALL NCDINQ(NCID,NRCDIM,CDUMMY,NRECS,NCODE)
C
C STATEMENTS TO FILL wmoId
C
 IVARID = NCVID(NCID,'wmoId ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 10 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 10 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,wmoId,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL STATION ID
C
 IVARID = NCVID(NCID,'stationName ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 20 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 20 CONTINUE
C
 CALL NCVGTC(NCID,IVARID,ISTART,ICNT,stationName,LENSTR,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL LATITUDE
C
 IVARID = NCVID(NCID,'latitude ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 30 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 30 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,latitude,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL LONGITUDE
C
 IVARID = NCVID(NCID,'longitude ',NCODE)

Table 4.2.4.1-2, cont.

A1-20

 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 40 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 40 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,longitude,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL ELEVATION
C
 IVARID = NCVID(NCID,'elevation ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 50 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 50 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,elevation,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL TIMEOBS
C
 IVARID = NCVID(NCID,'timeObs ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 60 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 60 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,timeObs,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL TIMENOMINAL
C
 IVARID = NCVID(NCID,'timeNominal ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 70 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE

Table 4.2.4.1-2, cont.

A1-21

 ISTART(J)=1
 ICNT(J)=NDSIZE
 70 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,timeNominal,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL REPORT TYPE
C
 IVARID = NCVID(NCID,'reportType ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 80 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 80 CONTINUE
C
 CALL NCVGTC(NCID,IVARID,ISTART,ICNT,reportType,LENSTR,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL AUTOMATED STATION TYPE
C
 IVARID = NCVID(NCID,'autoStationType ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 90 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 90 CONTINUE
C
 CALL NCVGTC(NCID,IVARID,ISTART,ICNT,autoStationType,
 + LENSTR,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL SKY COVER
C
 IVARID = NCVID(NCID,'skyCover ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 100 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 100 CONTINUE
C
 CALL NCVGTC(NCID,IVARID,ISTART,ICNT,skyCover,LENSTR,NCODE)

Table 4.2.4.1-2, cont.

A1-22

 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL SKY COVER LAYER BASE
C
 IVARID = NCVID(NCID,'skyLayerBase ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 110 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 110 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,skyLayerBase,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL VISIBILITY
C
 IVARID = NCVID(NCID,'visibility ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,ncode)
 LENSTR=1
C
 DO 120 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 120 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,visibility,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL PRESENT WEATHER
C
 IVARID = NCVID(NCID,'presWeather ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 130 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 130 CONTINUE
C
 CALL NCVGTC(NCID,IVARID,ISTART,ICNT,presWeather,LENSTR,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL SEA LEVEL PRESSURE
C
 IVARID = NCVID(NCID,'seaLevelPress ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)

Table 4.2.4.1-2, cont.

A1-23

 LENSTR=1
C
 DO 140 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 140 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,seaLevelPress,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL TEMPERATURE
C
 IVARID = NCVID(NCID,'temperature ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 150 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 150 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,temperature,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL TEMP FROM TENTHS OF A DEGREE C
C
 IVARID = NCVID(NCID,'tempFromTenths ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 160 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 160 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,tempFromTenths,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL DEWPOINT
C
 IVARID = NCVID(NCID,'dewpoint ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 170 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1

Table 4.2.4.1-2, cont.

A1-24

 ICNT(J)=NDSIZE
 170 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,dewpoint,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL DEWPOINT FROM 10THS OF A DEGREE C
C
 IVARID = NCVID(NCID,'dpFromTenths ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 180 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 180 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,dpFromTenths,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL WIND DIRECTION
C
 IVARID = NCVID(NCID,'windDir ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 190 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 190 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,windDir,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL WIND SPEED
C
 IVARID = NCVID(NCID,'windSpeed ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 200 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 200 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,windSpeed,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C

Table 4.2.4.1-2, cont.

A1-25

C STATEMENTS TO FILL WIND GUST
C
 IVARID = NCVID(NCID,'windGust ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 210 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 210 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,windGust,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL ALTIMETER
C
 IVARID = NCVID(NCID,'altimeter ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 220 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 220 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,altimeter,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL MINIMUM TEMP IN 24 HOURS
C
 IVARID = NCVID(NCID,'minTemp24Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 230 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 230 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,minTemp24Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL MAXIMUM TEMP IN 24 HOURS
C
 IVARID = NCVID(NCID,'maxTemp24Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C

Table 4.2.4.1-2, cont.

A1-26

 DO 240 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 240 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,maxTemp24Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL PRECIP1HOUR
C
 IVARID = NCVID(NCID,'precip1Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 250 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 250 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,precip1Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL 3 HOUR PRECIP
C
 IVARID = NCVID(NCID,'precip3Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 260 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 260 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,precip3Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL 6 HOUR PRECIP
C
 IVARID = NCVID(NCID,'precip6Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 270 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 270 CONTINUE

Table 4.2.4.1-2, cont.

A1-27

C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,precip6Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL 24 HOUR PRECIP
C
 IVARID = NCVID(NCID,'precip24Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 280 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 280 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,precip24Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL PRESSURE CHANGE CHARACTER
C
 IVARID = NCVID(NCID,'pressChangeChar ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 290 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 290 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,pressChangeChar,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL PRESSURE CHANGE IN 3 HOURS
C
 IVARID = NCVID(NCID,'pressChange3Hour ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 300 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 300 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,pressChange3Hour,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL CORRECTION
C

Table 4.2.4.1-2, cont.

A1-28

 IVARID = NCVID(NCID,'correction ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 310 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 310 CONTINUE
C
 CALL NCVGT(NCID,IVARID,ISTART,ICNT,correction,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C STATEMENTS TO FILL RAW METAR
C
 IVARID = NCVID(NCID,'rawMETAR ',NCODE)
 CALL NCVINQ(NCID,IVARID,CDUMMY,NTP,NVDIM,NVDIMS,NVS,NCODE)
 LENSTR=1
C
 DO 320 J=1,NVDIM
 CALL NCDINQ(NCID,NVDIMS(J),CDUMMY,NDSIZE,NCODE)
 LENSTR=LENSTR*NDSIZE
 ISTART(J)=1
 ICNT(J)=NDSIZE
 320 CONTINUE
C
 CALL NCVGTC(NCID,IVARID,ISTART,ICNT,rawMETAR,LENSTR,NCODE)
 IF(NCODE .NE. 0) GOTO 900
C
C CHECKS OUTPUT CODE AGAINST CURRENT INPUT FILE
C
 CALL NCINQ(NCID,NDIMS,NVARSC,NGATTS,NRCDIM,NCODE)
 IF(NVARSC.NE.NVARS) WRITE(6,340)
 340 FORMAT('NUMBER OF VARIABLES HAS CHANGED')
C
 900 CALL NCCLOS(NCID,NCODE)
C
 RETURN
 END

Table 4.2.4.1-2, cont.

A2-1

APPENDIX 2

Sample output from “testGridKeyServer” to list valid
values for AWIPS grid APIs

Exhibit A2-1. Sample output lines of “testGridKeyServer -v” to list valid values
for fieldID.

11 RH: Rel Humidity % CONTOUR IMAGE
27 pV: Pot Vorticity K/mb/1e5s CONTOUR IMAGE
35 ageoW: Ageo Wind kts BARB ARROW

In each of the above three lines, the italicized portion is the “fieldId”
value of interest; the next part (immediately after the colon) of the line is
a more spelled-out description of the variable, and the next field is the
units of the variable. Ignore the remainder of the line.

Exhibit A2-2. Sample output lines of “testGridKeyServer -p” to list valid values
for planeID.

12 400MB STANDARD: 400.0 MB offset:-14
49 TROP STANDARD: 0.0 TROP
55 1000MB-850MB COMPOSITE: 1000.0 MB 850.0 MB (1000MB 850MB)
66 12kft STANDARD: 3658.0 FH
128 350K STANDARD: 350.0 K offset:-233

In each of the above five lines, the italicized portion is the “fieldId” value
of interest. Ignore the remainder of the line.

Exhibit A2-3. Sample output lines of “testGridKeyServer -s” to list valid values
for sourceID and grid_source.

1 RUC RUC
 /data/fxa/Grid/SBN/netCDF/CONUS211/RUC
 Ruc211 rucClip 385 RUC 75 56 1 2 3 4
9 avnNH AVN
 /data/fxa/Grid/SBN/netCDF/NHEM201/AVN
 Avn201 grid201 -1 grid201 65 65 0
14 NGM213 NGM
 /data/fxa/Grid/SBN/netCDF/CONUS213/NGM
 Ngm213 grid213 -1 grid213 129 85 1

The output for each valid value of “sourceId” and “grid_source” consists of
three lines. In each of the above three entries, the italicized portion is
the “sourceId” or “grid_source” value of interest. Ignore the remainder of
each entry.

A3-1

Appendix 3

Summary of applicable data subdirectories by WSR-88D product type

Radar data subdirectories are determined by assembling all possible
permutations of product type, elevation, resolution, and data level names (the
last 3, as applicable). For instance, for Composite Reflectivity (CZ), the
possible data subdirectories are:

. ~/CZ/layer0/res1/level16

. ~/CZ/layer0/res1/level8
~/CZ/layer0/res4/level16
~/CZ/layer0/res4/level8

See Section 4.2.4.1 for the higher-level radar directory structure.

AAP: No subdirectories

AM: No subdirectories

APR: Elevation(s): layer1
Resolution(s): res4
Data Level(s): level8

CFC: Elevation(s): layer0
Resolution(s): res1
Data Level(s): level8

CM: Elevation(s): layer0
Resolution(s): res0
Data Level(s): level16

CS: No subdirectories

CSC: No subdirectories

CSCT: No subdirectories

CST: No subdirectories

CZ: Elevation(s): layer0
Resolution(s): res1 res4
Data Level(s): level16 level8

CZC: Elevation(s): layer0
Resolution(s): res1 res4
No Data Levels subdirectory

DHS: Elevation(s): layer0
Resolution(s): res1
Data Level(s): level256

DPA Elevation(s): layer0
Resolution(s): res4
Data Level(s): level256

DSTP: Elevation(s): layer0

A3-2

Resolution(s): res2
Data Level(s): level256

ET: Elevation(s): layer0
Resolution(s): res4
Data Level(s): level16

ETC: No subdirectories

FTM: No subdirectories

GSM: No subdirectories

HDP: Elevation(s): layer0
Resolution(s): res4
Data Level(s): level256

HI: No subdirectories

HIT: No subdirectories

HSR Elevation(s): layer0
Resolution(s): res1
Data Level(s): level16

LRA: Elevation(s): layer1 layer2 layer3
Resolution(s): res4
Data Level(s): level8

LRM: Elevation(s): layer1 layer2 layer3
Resolution(s): res4
Data Level(s): level8

M: No subdirectories

MT: No subdirectories

OHP: Elevation(s): layer0
Resolution(s): res2
Data Level(s): level16

OHPT: No subdirectories

PRR: No subdirectories

RCM: No subdirectories

RCS: Elevation(s): layer0
Resolution(s): res1
Data Level(s): level16

SCS: Elevation(s): layer0
Resolution(s): res0_5
Data Level(s): level8

SPD: Elevation(s): layer0
Resolution(s): res40
Data Level(s): level8

A3-3

SRM: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res1
Data Level(s): level16

SRR: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res0_5
Data Level(s): level16

SS: No subdirectories

STI: No subdirectories

STIT: No subdirectories

STP: Elevation(s): layer0
Resolution(s): res2
Data Level(s): level16

STPT: No subdirectories

SW: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res0_25 res0_5 res1
Data Level(s): level8

SWP: No subdirectories

SWR: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res1
Data Level(s): level16

SWS: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res0_5
Data Level(s): level16

SWV: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res0_25
Data Level(s): level16

SWW: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5

A3-4

elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res0_25
Data Level(s): level8

THP: Elevation(s): layer0
Resolution(s): res2
Data Level(s): level16

THPT: No subdirectories

TVS: No subdirectories

TVST: No subdirectories

UAM: No subdirectories

USRA: Elevation(s): layer0
Resolution(s): res2
Data Level(s): level16

V: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

Resolution(s): res0_25 res0_5 res1
Data Level(s): level16 level8

VAD: No subdirectories

VADT: No subdirectories

VCS: Elevation(s): layer0
Resolution(s): res0_5
Data Level(s): level16

VIL: Elevation(s): layer0
Resolution(s): res4
Data Level(s): level16

VWP: No subdirectories

WER: Elevation(s): layer0
Resolution(s): res1
Data Level(s): level8

XSR: Elevation(s): layer0
Resolution(s): res1
Data Level(s): level8

XSV: Elevation(s): layer0
Resolution(s): res0_5
Data Level(s): level8

Z: Elevation(s): elev0_5 elev14_0 elev19_5 elev2_5 elev4_3
elev6_0 elev8_7 elev10_0 elev14_6 elev1_5
elev3_4 elev4_5 elev6_2 elev9_9 elev12_0
elev16_7 elev2_4 elev3_5 elev5_3 elev7_5

A3-5

Resolution(s): res0_25 res0_5 res1
Data Level(s): level16 level8

A4-1

Appendix 4

External Documentation Standards for
Locally-Developed AWIPS Applications

The detailed requirement for external documentation are provided in the
following sections.

1.0 Local Application Registration Information

1.1 Application Description

13) Name. List the application name(s).

b. Version Number. List the latest version number of the software
(e.g., XNOW 2.0).

c. Version Date. List the date that the software was last updated.

d. Type. Indicate the type of application (e.g., display, formatter,
CRS, LDAD preprocessor, etc.).

e. Description. Provide a detailed functional description of the
application and describe its operational use.

f. Languages. List the programming languages used in the application
(e.g., FORTRAN 77, C, C++, Perl, netCDF Perl, Tcl/Tk, python,
Perl/Tk). If there is a mix, each language and interpreter should be
specified.

g. Status. Indicate the current status (e.g., Planned, Under
Development, or Operational).

1.2 References

a. Originator. List the original developer (last name, first name) of
application(s).

b. Originating Office: List the office (e.g., AMA, ERH).

c. Maintenance Programmer. List maintenance programmer (last name,
first name) assigned to this application.

d. Documentation. List the documentation available for this application
(e.g., User, Installation, Maintenance). List any web site where
more information is provided.

1.3 Software Inventory

a. New Software Added. List the name and location of all new files
added. Include which machine(s) (e.g., DS1,AS1) and full path name.

A4-2

b. COTS/Shareware/Freeware. List any COTS, shareware, or freeware
packages required for this application to build or run. Include
version and patch level information.

c. Existing Files Changed/Deleted. List any existing file on the system
that needs to be modified. Include which machine(s) (e.g., DS1,AS1)
and full path name of all files. This should cover all changes
whether to AWIPS software or otherwise such as standard Unix files.
For any core system files (e.g., /etc/services, cron, allow, any
Informix setup or parameter files, any operating system parameter
files), explicitly describe what changes are being made.

d. New Data Files. List all new data directories and data files that
are specific to this application. Indicate file format, temporary or
permanent, and size.

e. New Databases/Tables. List any new Informix database tables created
by this application. Include the Informix dbspace, database name and
table name.

1.4 Data File/Database Interfaces.

a. AWIPS System/HydroMet Data Files. Identify any existing data files
accessed by the application. Include the data type (e.g., Grids,
Satellite, METARs, RAOBs), file format (e.g., netCDF, native,
plotfile), and how often they are being accessed.

b. AWIPS Text Database Products. Identify any Text Database products
accessed by this application. Include the AWIPS PIL of the product,
in cccNNNxxx format, and how often it is being accessed.

c. AWIPS RDBMS. Identify any Informix database tables accessed by this
application. Include the Informix dbspace, database name and table,
and how often it is being accessed.

1.5 External/Internal Interfaces.

Identify any AWIPS external or internal interfaces this item will access
(e.g., NWWS, NWR, ASOS, LDAD) and how often it will interface.

1.6 Runtime Signature

a. Host Machine. Identify the host(s) on which major processes of the
properly-configured program run. Does not include NFS access of data
files residing on another machine's disks, or export of displayed
output to another machine's monitor. For transient processes,
describe when (how often, what times of day) they become active.

b. CPU. Characterize in general terms how much CPU or memory the
application is expected to use while running. The approximate
running times (CPU time and Clock time) in whole seconds, when (if
allowed by the application) run at the same time that normal AWIPS
processes are running on the host machine(s). This applies to major
subprocesses of primarily-interactive applications, not to the user
interactions with the interface. See Appendix 6 of the AIFM for
useful tools to evaluate the impact of a program on the system.

A4-3

c. Disk Usage. Identify the total disk space required for this
application. Provide a separate total for executables, all
application specific data files and application-specific RDBMS usage.
It may be necessary to estimate requirements for data file space.
The estimate should reflect a probable upper limit.

d. Network/Communications. Describe any usage of the AWIPS WAN. In
particular, describe how it is accessed (i.e., which APIs).
Characterize the data flow over the WAN because of the application(s)
(i.e. how much data, how often, what times of the day for peak
transmission rates, etc.). Describe any usage of the AWIPS SBN.
That is, note whether the application puts data on the WAN for
distribution over the SBN. Characterize the data flow over the SBN
because of the application(s).

1.7 Other Performance/System Resource Usage

a. Performance. Assess usage of the Network File System (NFS) and
Informix (e.g., triggers or otherwise). If known, describe any extra
load being put on shared services (e.g., notificationServer,
textNotificationServer, oninit, AsyncProductScheduler, NWWSScheduler,
MHSserver). List anticipated issues with algorithmic performance for
heavy number-crunching functions. Describe anticipated use of remote
shell, rcp, or other such system calls.

b. System Resource. Identify any anticipated use of Omniback/tape
drive. Identify potential problematic use of special hardware
resources (e.g., async mux ports, LDAD terminal server ports,
modems).

2.0 User Information

a. Configuration. Provide instructions (if needed) for configuring the
application for local use.

b. Execution. Provide instructions for running the application and for
recovering from errors.

c. Maintenance. Provide instructions for maintaining (e.g., purge,
clean-up) the data sets created and used by the application.

3.0 Installation Information

a. Tar File Information. List all tar files containing the program's
source code and data files. The suggested format of this listing is
extracted from the columnar format produced by the HP-UX ls command

b. Makefiles. Describe all makefiles associated with building the
program, their locations in the source tree, their interdependencies,
and order of execution. Note that if makefiles are not provided with
the package (an undesirable option), then this section must include a
full set of the compile and link command lines needed to build the
program, including references to libraries (AWIPS and/or standard).
The use of makefiles is strongly recommended.

A4-4

c. Application Environment. Document the types and versions of the
operating system, compilers, and other COTS (Commercial, Off-The-
Shelf) packages under which the executable code is built and run. It
includes the operating system and version (e.g., HP-UX 10.20) ,
compiler/interpreter and version (e.g., HP FORTRAN 9000 version 9.0),
and list the names and definitions of all environment variables that
need to be set for the application to be built and run. Only include
those that are in addition to the AWIPS system environment variables
required to be defined for AWIPS libraries or resources that are used
by the application. Include the full name of the environment
variable, the value of the environment variable, and indicate
whether the variable is needed for runtime (R) or for setup/creation
of the program (S), or both (R/S)

d. Detailed Installation Procedures. Describe all the steps involved in
setting up the environment, configuring the system, building the
application, installing the executables, and, as needed, file
decompression, relationships to other programs, creating and
initializing the data files, creation and loading of RDBMS tables,
setting up cron jobs and scripts, and directions on running scripts
to automatically perform any of the above.

e. Installation Scripts. Provide an inventory of any scripts that have
been developed to automate the process of setting up the program
build and runtime environments, and building and installing the
program. It includes the absolute pathname for the single directory
which contains the script files and a file listing of script files
needed by the program. The suggested format for this listing is
extracted from the columnar format produced by the HP-UX ls command.

4.0 Maintenance Information

The following information should be available to a maintenance programmer.

a. Design information. A figure to illustrate the relationship among,
as applicable, the disk files (data files, control files, and static
data), the Relational Data Base Management System (RDBMS), the
program(s) or major processes, and the output data product(s) and/or
the display (e.g., Data Flow Diagram). Summarize the flow of the
program and the data in clear, simple statements that describe how
the program works. Discuss any scientific formulas and mathematical
algorithms to show the scientific foundation of the program. For C++
programs, provide a class diagram which shows categories, classes,
attributes, methods, and relationships in a standard notation such as
Booch-93.

b. Testing information. Information on the testing performed on the
application. This includes test procedures and test data that can
simplify future regression testing.

c. Application history. Listing of enhancements (versions) and known
software deficiencies for the current version.

A suggested format and content for a maintenance document is provided in
Appendix 7. This format is an adaptation of those standards used in the AFOS
Computer Program (CP) series.

A5-1

Appendix 5

man pages for handleOUP.pl and distributeProduct CLIs

A5-2

Handling Of Official User Products (OUPs)

Name
handleOUP.pl

Synopsis
handleOUP.pl [-w] [-m][-r] <AWIPS_ID> <product_pathname>

Options
[-w] specifies the WMO special message type
[-m] selects test mode as the AWIPS operational mode
[-r] specifies the routing on the AFOS network when AWIPS is in pre-

commissioned or test mode

Arguments
<AWIPS_ID> full CCCCNNNXXX AWIPS Product Identifier

<product_pathname> relative or absolute path and filename of the text file
containing the Official User Product

Description
handleOUP.pl automatically performs certain tasks associated with the handling
of an Official User Product, including local storage into the Informix fxatext
database, product archival, distribution across the AWIPS WAN to the Network
Control Facility (NCF) and to NOAA Weather Wire Service (NWWS) uplink sites,
and distribution to the local AFOS interface when AWIPS is in pre-commissioned
mode.

Product distribution on the AWIPS communications system is accomplished by
submitting a message request to the x.400 ISOCOR Message Handling System.
handleOUP.pl uses the distributeProduct command line interface to create a
x.400 message enclosing the <product_pathname> as an attachment.
distributeProduct uses the <AWIPS_ID> passed from handleOUP.pl to create the
message header which must precede the contents of a product in accordance
with SRSI H.3 requirements for product dissemination on the AWIPS WAN. The
message is submitted at a priority level associated with the category of the
product, which is derived from the <AWIPS_ID> (a table lookup into
/awips/fxa/data/awipsPriorities.txt is performed using the category as a key).

handleOUP.pl supports two operational mode for AWIPS: commissioned and pre-
commissioned. The commissioned mode or status of an AWIPS site is set in the
configuration file /data/fxa/workFiles/wanMsgHandling/siteCommission.txt.
Based on the value for the commissioned status, the product is distributed
across the AWIPS WAN either with a test WMO header (ii=97 in TTAAii) or a
valid WMO header. Generation of test WMO headers may also be accomplished by
selecting the -m command line option -- effectively downgrading the
operational status of an AWIPS site from commissioned to test mode. In either
AWIPS pre-commissioned or test mode, products are transmitted to AFOS with a
proper message header. For this reason, the <product_pathname> is assumed to
contain the contents of the OUP only, without a communications header.

Upon successful dissemination to either the NCF, to the predesignated primary
and backup NWWS uplink sites (specified in the configuration file
/awips/ops/data/mhs/nwwsup_dlist.data), or to AFOS during AWIPS pre-
commissioning phase, a copy of <product_pathname> is stored in a predesignated

1 The /data/fxa/archive/OUP/scratch directory is monitored hourly; at the end
of which interval, all stored products are moved to the
/data/fxa/archive/OUP/archive directory.

A5-3

holding directory for archival (/data/fxa/archive/OUP/scratch).1 The product
is archived and stored with the AWIPS WAN message header.

If AWIPS is in test or in pre-commissioned mode, handleOUP.pl uses the
AFOS_routing_node to generate the following 2 line AFOS product header:

CCCNNNXXX ADR
TTAAii CCCC DDHHMM[BBB]

where:
CCCNNNXXX is the 7-9 character AFOS product identifier (PIL),
ADR is the 3 character AFOS routing node,
TTAAii is the WMO header,
CCCC is the 4 letter originating office identifier,
DDHHMM is the date/time stamp (UTC format), and
BBB is the (optional) WMO special message type.

If AWIPS is in commissioned mode, handleOUP.pl generates the AWIPS product
header:

TTAAii CCCC DDHHMM[BBB]
NNNXXX

where:
TTAAii CCCC DDHHMM[BBB] is the WMO Abbreviated Heading, with elements as

defined above
NNNXXX is the subset of the AWIPS Identifier CCCCNNNXXX, and is generally

the same as the subset of the CCCNNNXXX AFOS message header field, as
above.

handleOUP.pl uses the /awips/fxa/data/afos2awips.txt configuration file to
complete the message header: from this file and from the <AWIPS_ID>,
handleOUP.pl obtains the equivalent AFOS product identifier (PIL), and the WMO
header TTAAii and originating WFO identifier fields. The WMO header DDHHMM
day/time field is based on the system clock time at the time when handleOUP.pl
generates the time string, and is given to the current minute. DDHHMM cannot
be specified or overridden by the user or calling program. The generated
message header is subsequently prepended to a copy of the product.

Options:
[-w WMO_special_message_type]

Specify the WMO message type. Supported types include:
AMD, COR, RTD, SUP, SPL; and AAx, CCx, RRx, and Pxx where A < x < Z (See
distributeProduct)

[-m]
Specify test mode. Selecting this option results in the distribution of a
product across the AWIPS WAN with a test WMO header as well as to AFOS with
an AFOS-standard message header. Amendments are made to a copy of the
product.

If the -m option is not selected, the site’s commissioned status (obtained
from /data/fxa/workFiles/wanMsgHandling/siteCommission.txt) is used to

A5-4

determine whether the product is sent with an AFOS product header to AFOS
and/or to the AWIPS WAN with a “test” AWIPS product header.

[-r AFOS_routing_node]
Specify the three character AFOS receiving site. Examples of AFOS nodes
include:

LOC, DEF, CEN, CES, CSW, EAS, SOU, WES, ALL

Default: DEF

If this option is not selected, the default value of DEF is assigned as the
routing address. The DEF value instructs AFOS to search its default
addressing configuration table for the given AFOS product identifier and
obtain the intended recipient(s). If the product is not found in the
table, AFOS sends the product to ALL sites on the AFOS network.

Required Arguments:

<AWIPS_ID>
The 8-10 character AWIPS identifier of the form CCCCNNNXXX, where:

CCCC is the International Civil Aviation Organization (ICAO)-approved
identifier of the office originating the product,

NNN is the 3 character product category,
XXX is the 1-3 character product designator

The NNNXXX is (generally) identical to the AFOS NNNXXX.

<product_pathname>
The fully qualified product filename. The file is assumed to contain only
the contents of the product, without a communications header.

Return Values
handleOUP.pl returns the following error codes:

0 = successful
1 = error

Specifically, a successful return indicates that the product was successfully
distributed to any one receiving site, was archived, and was stored in the
fxatext database. An unsuccessful return indicates that either one or more
handling tasks failed to be completed.

Log File
If handleOUP.pl is invoked from the as or ds, the log file resides in the
following date-named directory:

/data/logs/fxa/<YYMMDD>

If handleOUP.pl is invoked from the workstation, the log file resides in the
date-named directory:

/data/logs/fxa/display/<DISPLAY>/<YYMMDD>

where DISPLAY is value specified by the DISPLAY environment variable. (If the
DISPLAY variable is not set, a log file is created in the date subdirectory in
/data/logs/fxa/display/:0.)

A5-5

The name of the handleOUP.pl log file is handleOUP_<pid> where <pid> is the
process id number.

The log file traces all OUP-related activities, from table lookups for message
header generation and message composition for product distribution on the
AWIPS WAN via the distributeProduct command line interface and to AFOS via the
sendafos command line interface, to product storage and archival. This log
file may be viewed in conjunction with the distributeProduct log file for
complete traceback. The distributeProduct log file is stored in the same
directory by the following name:

distributeProduct<pid><host><HHMMSS>

References
See also distributeProduct documentation

A5-6

Product Distribution Across the WAN

Name
distributeProduct

Synopsis
distributeProduct [options] <awips_id> <product_pathname>

where options include the following:

[-c action, [,action]...]
[-s subject]
[-a addressee [,addressee]...]
[-p priority]
[-t message_type]
[-e enclosepath, [,enclosepath]...]
[-w wmo_special_message_type]
[-m]

Description
distributeProduct creates a product message and submits it for

distribution across the AWIPS WAN to the addressed sites. The submitted
product in <product_pathname> should contain the contents of the NWS product
only, without any communications header.

Prior to distribution, distributeProduct prepares the product by creating the
WAN communications header and prepending the header to a temporary copy of the
product. distributeProduct assumes that each line of the text product is
delimited by a single, end-of-line character (either <CR> or <LF>).
distributeProduct reformats the transmitted version of the product such that
each line of the text product is terminated with the <CR><CR><LF> character
combination, as required by the NWSTG. The WAN communications header includes
either the AFOS Product Header (in non-commissioned mode) or the test or
operational AWIPS Product Header (commissioned mode). Refer to documentation
of handleOUP.pl for header descriptions and rules.

Distribution requests, enclosing the temporary copy of the product, are
subsequently made to the x.400 Message Handling System (MHS) through the
msg_send utility program. When distributeProduct is executed, a product
message is submitted to the x.400 MHS. Upon successful submission, MHS
generates a unique message ID which distributeProduct prints to the standard
output STDOUT (as well as to its log file). The format of the message ID is
the following:

<sending_site_ID>-<sequence_ #> (ex: TOP-23410)

The message ID proves useful from two perspectives: the sender may use the
message ID to trace receipt of the distribution request to MHS via the log
file /awips/ops/logs/<site>/msgreq_svr.log; the recipient may use the message
ID recorded in /awips/ops/logs/<site>/msgrcv_svr.log to readily identify the
source of the message and the directory where the message is placed. Received
products are not stored by the sender-assigned name; received products are
stored as attachments to x.400 messages under the filename:

<sending_site_ID>-<sequence_#>.001

A5-7

(x.400 messages are stored as documents by the same name using a .doc
extension in place of .001 extension, and for the sake of clarity, x.400
documents are not discussed). The difference in the product filename (sender-
assigned vs. received) is transparent to the receive handling application.

Options:
[-c action_list]

Specify action(s) which the receiving site is to take upon
receiving the product. Current action keywords include the
following:

TEST_ECHO
AFOS_STORE_TEXTDB
AWIPS_STORE_TEXTDB
NWWS_UPLINK
RIVPROD_CRS

Multiple actions may be specified in a comma-delimited list
without intervening spaces. The action is matched against code
numbers derived from the message receive table to determine the
appropriate handling routine at the receiving site.

Default action: MHS default (code 0) -- message is stored in the
default receive queue directory (/data/x400/msg/inbox/<msg_type>),
where <msg_type> is one of: ack, admin, nack, other, retrans,
routine, or test, as appropriate for that message type. The
message is subsequently logged.

[-s subject]
Specify the subject of the message. The subject is an ASCII
character string with a maximum length of 40 characters. The
subject must be enclosed in quotes if it includes spaces or tabs.
(See Action Keywords, below, for special usage of subject option
argument.)

[-a address_list]
Specify list of non-acknowledging recipients of the product
message. Multiple recipients are specified through a comma-
delimited list using either the AWIPS site identifier and/or
special address keywords. Address keywords include the following:

DEFAULT
DEFAULTNCF
NWWSUP

Default addressee: DEFAULT

The file /awips/ops/data/mhs/allsites.data contains the list of
valid AWIPS site identifiers.

[-p priority]
Specify the priority of the message. Supported values are 0, 1,
and 2, with level 2 representing the highest priority.

Default priority: 0

[-t message_type]
Specify the type of message. Supported message types include the
following:

Routine
Supplement

A5-8

Amendment
Correction
Status
Test
Timing
Command
Inhibit
Clear
“Warning Received”
Special
Administrative
“Routine Transmission Delayed”
“File Transfer”

The entire name must be specified. If the name of the type has
multiple words, the name must be enclosed in quotes, as shown
above.

Default type: Routine

Note: msg_send provides acknowledgment message types which are not
supported by distributeProduct for Build 4.2. These types are
omitted from the above list.

[-e enclosure_pathname_list]
Specify enclosure pathname(s). The path to the enclosure file may
be relative or absolute. Enclosure files or attachments may be
either text or binary.

[-w wmo_special_message_type]
Specify the WMO message type, which becomes the bbb field in the
Abbreviated WMO Header prepended to the product. Supported types
include the following:

AMD
COR
RTD
SUP (not WMO standard--supports ASOS and microART)
SPL (not WMO standard--supports ASOS and microART)

and the non-WMO, version-stamped variations used by the NWS:

AAx (amended), CCx (corrected), RRx (delayed) and Pxx

where x is the letter A through Z, used sequentially to indicate
subsequent use of the same header.

[-m]
Specify test or AWIPS pre-commissioned operational mode. This
option generates a test WMO header which is then prepended to a
copy of the product. If not specified, distributeProduct uses a
site’s commissioning status to determine whether a test WMO header
will be generated.

Required Arguments:
<awips_id>

Specify the AWIPS identifier (CCCCNNNXXX) for the product. The
AWIPS identifier is used to compose the WAN communications header.

A5-9

<product_pathname>
Specify the absolute or relative pathname of the product.

Address Keywords
DEFAULT

Specifies adjacent sites as addressees based on the product’s WMO
id. Default specification is site configurable.

DEFAULTNCF
Specifies the Network Control Facility (NCF) as the addressee. At
the NCF, the product may be further routed over the SBN, over the
NWWS up-link, to the NWSTG, etc., according to its default, table-
driven specification at the NCF.

NWWSUP
Specifies a site’s primary and backup NWWS up-link sites as
addressees. The file /awips/ops/data/mhs/nwwsup_dlist.data is
site-configurable, and specifies the primary and backup NWWS
uplink sites for a local WFO.

Action Keywords
TEST_ECHO

Echoes “Code 1”, the message id, the message subject, the product
pathname, and any enclosures to /tmp/msg_log.

AFOS_STORE_TEXTDB
Stores the product in the Informix fxatext database, taking the
AFOS product identifier as the argument. The subject command line
option (-s) must be specified with the AFOS identifier as the
argument.

AWIPS_STORE_TEXTDB
Stores the product in the Informix fxatext database, taking the
AWIPS product identifier as the argument. The subject command
line option (-s) must be specified with the AWIPS identifier as
the argument. The corresponding AFOS PIL is determined from the
/awips/fxa/data/afos2awips.txt file, and the product is stored
under the PIL.

NWWS_UPLINK
Transmits the product over the NOAA Weather Wire Service satellite
up-link. The subject command line option (-s) must be specified
with the AFOS identifier as the argument.

RIVPROD_CRS
Transmits RFC NWR products to the home and neighboring WFOs for
broadcast on transmitters that cover the area of responsibility
applicable to the product.

Return Values
distributeProduct returns the following error codes:
 0 = successful
 -1 = error
> 0 = # failed messages

The number of actions approximately determines the number of messages created
and submitted. In addition, distributeProduct logs and prints to standard
output the error messages returned by msg_send, which include the following:

1 As awipsusr, the forecast user does not need to specify the full pathname
for distributeProduct; the path to the distributeProduct executable,
referenced by the $PATH environment variable, includes the /awips/fxa/bin
directory.

A5-10

1 Invalid message type.
2 Failed to create the message for some reason.
3 Failed to add an addressee to the message.
4 Failed to add an enclosure to the message.
5 Failed to add the subject of the message.
6 Failed to set the priority of the message.
7 Failed to add the body to the message.
8 Failed to submit the message.
9 Failed to assign a message id to the message.

Examples
The following examples demonstrate the use of distributeProduct. For
illustrative purposes, the examples use the Topeka, KS WFO as the local
site from which products are generated and distributed across the AWIPS
WAN. Products are distributed in the form of messages via the x.400
Isocor Message Handling System (MHS). Within the communications
framework of MHS, the local site is known as the “sending site”; the
recipient of a product message is known as the “receiving site”. A site
is referenced by its site identifier. Table 1 contains the WFO sites
and associated Site IDs which are referenced in the examples below.

Table 1. WFO sites Referenced in Examples.

WFO Site AWIPS WFO Site ID

Topeka, KS TOP

Pleasant Hill, MO EAX

Goodland, KS GLD

Springfield, MO SGF

Each example below contains an Objective, a general and a specific instance of
the distributeProduct command line invocation, a sample return message from
MHS, and a brief description highlighting the effect of the given invocation.1

Example 1
Objective:

To send a product to multiple WFOs

General Format:
distributeProduct -a site1, site2, ... <AWIPS_ID> <product_pathname>

Sample Format:
distributeProduct -a EAX,GLD,SGF KTOPSWRKS /data/fxa/hwr/TOPSWRKS.dat

Sample Return to STDOUT from MHS:
TOP-23413

In the sample format above, the -a option specifies a list of non-
acknowledging recipients followed by the AWIPS site identifiers; KTOPSWRKS is
the AWIPS product identifier associated with the product contained in the file

A5-11

/data/fxa/hwr/TOPSWRKS.dat. The product is sent from Topeka to three WFO
sites: Pleasant Hill, MO (EAX), Goodland, KS (GLD), and Springfield, MO (SGF)
via x.400 MHS. At the receiving sites, the product is stored as an x.400
enclosure file in /data/x400/inbox/other directory and logged under an MHS
generated filename, TOP-23413.001 (MHS executed its default action, since none
was specified).

Example 2
Objective:

To send a product to multiple WFOs and store it in the respective
databases of the receiving sites

General Format:
distributeProduct -a site1,site2,... -c AFOS_STORE_TEXTDB -s <AFOS_ID>
<AWIPS_ID> <product_pathname>

Sample Format:
distributeProduct -a GLD -c AFOS_STORE_TEXTDB -s TOPVERGLD KTOPVERGLD
/data/fxa/ver/KTOPVERGLD.dat

Sample Return to STDOUT from MHS:
TOP-23414

In the sample format above, the product is sent from the Topeka, KS WFO (TOP)
to the Goodland, KS WFO (GLD). At Goodland, the product is stored as an x.400
enclosure file in the /data/x400/mhs/msg/rcvq directory under the MHS
generated filename TOP-23414.001, and is also stored in the GLD text database.
(The /data/x400/mhs/msg/rcvq directory is the storage directory for received
messages associated with the AFOS_STORE_TEXTDB action.)

The receive handling specification associated with the action code
AFOS_STORE_TEXTDB requires that the AFOS product identifier be specified via
the -s option so that the product is stored under that identifier.

Example 3
Objective:

To send the product to the NCF

General Format:
distributeProduct -a DEFAULTNCF <AWIPS_ID> <product_pathname>

Sample Format:
distributeProduct -a DEFAULTNCF KTOPADMTOP /data/fxa/adm/TOPADMTOP.dat

Sample Return to STDOUT from MHS:
TOP-23415

In the sample format above, the DEFAULTNCF address keyword is used to specify
the NCF as the product recipient. The product is forwarded to the NCF, stored
as an x.400 enclosure file in the /data/x400/inbox/other directory under the
MHS-generated filename TOP-23415.001 and logged. Code actions are not
applicable at the NCF. The NCF may choose to further route the product (to
SBN, NWSTG, etc.) using the WMO id contained within the enclosure file to
perform a table-lookup in the switching directory.

Example 4
Objective:

To transmit a product over the NWWS uplink

A5-12

General Format:
distributeProduct -a NWWSUP -c NWWS_UPLINK -s <AFOS_ID> <AWIPS_ID>
<product_pathname>

Sample Format:
distributeProduct -a NWWSUP -c NWWS_UPLINK -s TOPADMTOP KTOPADMTOP
/data/fxa/adm/TOPADMTOP.dat

Sample Return to STDOUT from MHS:
TOP-23416

In the sample format above, the NWWSUP address keyword is used to specify the
local primary and backup NWWS uplink sites. MHS expands this keyword to the
site(s) designated in the /awips/ops/data/mhs/nwwsup_dlist.data configuration
file. MHS performs a table lookup for the code number associated with the
action keyword NWWS_UPLINK (/awips/ops/data/mhs/rcv_handler.tbl).

At the receiving site(s), the product is stored as an x.400 enclosure file
under an MHS generated filename (TOP-23416.001) in the holding directory
designated to receive products destined for the NWWS uplink
(/data/fxa/workFiles/nwws/rcvq). MHS passes the AFOS product identifier
(TOPADMTOP) and enclosure filename (TOP-23416.001), which are the required
arguments, to the AWIPS NWWS interface.

Example 5
Objective:

To transmit a product over the NWWS uplink and also to store it in the
text database of the NWWS uplink sites

General Format:
distributeProduct -a NWWSUP -c NWWS_UPLINK, AFOS_STORE_TEXTDB -s
<AFOS_ID> <AWIPS_ID> <product_pathname>

Sample Format:
distributeProduct -a NWWSUP -c NWWS_UPLINK, AFOS_STORE_TEXTDB -s
TOPADMTOP KTOPADMTOP /data/fxa/adm/TOPADMTOP.dat

Sample Returns to STDOUT from MHS:
TOP-23417
TOP-23418

In the sample format above, the NWWSUP address keyword is used to specify the
local primary and backup NWWS uplink sites. MHS expands this keyword to the
site(s) designated in the /awips/ops/data/mhs/nwwsup_dlist.data configuration
file. At the receiving site(s), the product is effectively stored as an x.400
enclosure file in two holding directories, each associated with a different
action keyword. /data/fxa/workFiles/nwws/rcvq is associated with the
NWWS_UPLINK keyword, where the MHS filename TOP-23417.001 is used to store the
product. /data/x400/mhs/msg/rcvq is associated with the AFOS_STORE_TEXTDB
keyword, where the MHS filename TOP-23418.001 is used to store the product.

MHS passes the AFOS product identifier and enclosure filename (required
arguments) to the AWIPS NWWS interface as well as to the command line
interface, textdb, for text database storage.

References
See handleOUP.pl and textdb documentation.

A6-1

Appendix 6

Tools to Monitor Application Performance and Resources

Once a local application has been developed, the developer must ensure that
its execution does not consume undue resources. The following paragraphs
discuss some of the tools that allow a developer to monitor resource
utilization by an application. The process of optimizing an application so
that it consumes fewer resources is beyond the scope of this appendix.

1.0 Online Documentation

Whereas documentation is not strictly a performance-monitoring tool, we
discuss it first because it is the source of valuable information about such
tools.

1.1 UNIX man pages

The first source of online documentation or help is the UNIX “man” pages,
short for manual pages.

To see a man page for a UNIX utility program, type at the command line:

man utility_name

Thus to obtain detailed information about the vmstat utility, type at the UNIX
prompt:

man vmstat

1.2 Other Documentation

The tools and utilities provided by HP that go beyond the normal UNIX
utilities are not always documented in man pages. Rather, the documentation
for them is on a compact disk. In order to be usable, the compact disk must
be inserted into a local machine’s CD-ROM player and mounted (ask the site
administrator for help on doing this). To verify that the CD is mounted, log
on to the machine where the CD is mounted and type at the UNIX prompt:

bdf

The CD is viewed through a utility that has both a character-oriented and a
graphical user interface. In order to use the more convenient graphical user
interface, you must export the machine’s display to a workstation (again, ask
the site administrator for help). Once the CD has been mounted and the
display exported, type at the UNIX prompt:

lrom

You will then be given menus, dialog boxes, etc., which will allow you to
navigate through the CD. The Hewlett-Packard web site, http://docs.hp.com,
has excellent documentation also.

2.0 Glance/Glance Plus

Glance/Glance Plus (or just Glance, for short) is a system performance
monitoring and diagnostic tool for local site use. It is bundled with the

A6-2

GlancePlus Pack and is available on the DSs and ASs. It is not normally
available on the workstations although free temporary licenses can be obtained
for a 90-day trial. Glance provides near-real-time performance information
about a computer system, which allows a developer to examine the impact of his
or her application on the system. Glance provides the ability to view
detailed information on individual processes, including CPU and memory use and
time spent waiting for different system resources. Glance has both a
character-based and a graphical-user interface (GUI).

The character-based interface is called “glance” whereas the GUI is called
“gpm.” There are man pages for both tools. For detailed information, refer
to the HP GlancePlus/UX User’s Manual on the compact disk referenced above.

3.0 Informix

Informix provides several utilities to monitor the performance of the database
engine. What follows is a brief overview of their capabilities. Detailed
descriptions are available in the Informix Performance Guide for Informix
Dynamic Server.

3.1 Onstat Utility

The Informix onstat utility is used to check the status of the Informix engine
and monitor its activities. The utility provides a wide variety of
performance-related and status information. The most useful option of the
onstat utility is -g, which accepts further parameters. For detailed
information about onstat -g arguments, refer to the Informix Administrator’s
Guide.

3.2 Onperf Utility

The Informix onperf utility monitors Informix engine performance. The onperf
utility uses a graphical-user interface (GUI). The utility provides the same
information as onstat, but graphically and in real-time. For a detailed
discussion of onperf, consult the Informix Performance Guide for Informix
Dynamic Server.

4.0 MeasureWare Agent

The HP MeasureWare Agent collects comprehensive operating system activity
data. The MeasureWare Agent is installed on all AWIPS ASs and DSs to collect
performance data.

The MeasureWare Agent provides data to PerfView (see Section 5.0) for
analysis. MeasureWare Agent data can also be exported to a variety of third-
party products for capacity planning, statistical analysis, and performance
and resource management (see Section 6.0 on Extract/Excel for an example of
how this is done).

MeasureWare collects data on three levels: global, application, and process.
The first two items are of interest in this discussion.

Global and application metrics are summarized and logged at five-minute
intervals. The definition of what constitutes global data cannot be altered;
however, what constitutes application data is user-configurable.

In order to collect data that is relevant to the local application under
development, changes must be made to a configuration file, /var/opt/perf/parm.

A6-3

This configuration file is also known as the “parm file.” For a detailed
discussion of the contents of the configuration file, consult the compact disk
(see Section 1.2 of this Appendix). Briefly stated, this is what is required.

First, a new application group must de defined; this is done by inserting a
line of the form:

application = local_apps

into the parm file. This insertion should be made at such a point in the file
that the new application group is the first to be defined. For instance, if a
local developer has developed an application called xyz, he or she would
insert (with assistance from the site administrator, if necessary), verbatim,
the following line into the parm file of the machine on which the application
is to be run:

application = xyz

This insertion would be made immediately before the first application
statement already in the file.

Note: For the ds parm file, replace the line
“application = preprocess*” with “application = local_apps”.

One then associates the names of executables with the application group by
inserting a line or lines of the following form into the parm file immediately
after the line that defined the application group name, as follows:

file = excutable_name1, executable_name2, ...

To continue our example, if the developer’s application consists of two
executables called xyz1 and xyz2, then the developer would insert the
following line into the parm file immediately after the previous line
inserted:

file = xyz1, xyz2

Note that the full pathname must NOT be used for the executable name, only the
name of the executable (strictly, the process) which would appear if one
typed:

ps

at the UNIX prompt when the process was executing (see Section 8.0 of this
appendix for more information on the ps command). This is an important
distinction.

After making the changes to the parm file, the developer (and site
administrator) should verify that the parm file is still valid by typing at
the UNIX prompt:

utility -xp

This command invokes a program (called utility) which scans the parm file for
errors and produces a report documenting the results of the scan. If errors
are reported, then the parm file must be altered. The most common source of
error is the following: the maximum number of application groups that can be
defined is 31. Should this error be reported, the parm file must be modified,

A6-4

either by eliminating or combining application groups until the error is
removed. When the parm file is error-free, the MeasureWare Agent must be
restarted. This is done by typing at the UNIX prompt:

/opt/perf/bin/mwa restart scope

Execution of this command requires root privileges.

5.0 PerfView

HP PerfView Analyzer enables users to graphically analyze and document long-
term, historical resource-utilization data collected by MeasureWare Agent.
Note that this is in contrast to Glance, which is near real time but provides
no long-term storage of results. Currently PerfView is installed only at the
NCF.

PerfView at the NCF can be accessed over the wide-area network (WAN). To do
this, log on to a workstation, from there, log on to em1-ancf as user “guest”
with password “awips”, export the display back to the workstation and type at
the UNIX prompt:

pv

This will bring up the main PerfView display. PerfView has extensive online
help. Nevertheless, the basic idea is to establish a connection between
PerfView and the machine that is to be monitored. In PerfView terminology,
this is called “managing the machine.” This is done by selecting the machine
name from the list of available machines, or, if the machine name is not
available, adding it to the list and then selecting it. It is possible to
manage several machines simultaneously; this allows for the comparison of
machines to each other.

Once the machine on which the local application to be evaluated is being
managed, it is possible to view both global metrics and application-based
metrics (see the discussion of MeasureWare Agent above for the distinction
between global and application metrics). Given that there are several hundred
metrics available, it is not possible to discuss them all in this appendix;
in any case such a discussion would duplicate the online help.

The key metrics that should be analyzed are:

a. CPU utilization (denoted GLOBAL_CPU_TOTAL_UTIL and
APP_CPU_TOTAL_UTIL, for the global and application CPU utilization,
respectively)
a. peak disk utilization (PEAK_DISK_UTIL)
b. memory utilization (MEM_UTIL)
c. swapout rates (MEM_SWAP_RATE)
d. pageout rates (MEM_PAGEOUT_RATE)

The contribution of the locally-developed application to the global resource
metrics should be monitored; if the application causes undue increases in
global resource metrics, then consideration should be given to ways of
reducing those increases. As a rule of thumb, global CPU utilization should
not exceed 70%; global peak disk utilization should not exceed 50%; global
pageout rate should be less than 5 per second; and global swapout rate should
be less than 1 per second.

A6-5

PerfView Tip: After you have connected to your data source,
select “Class Compare” and hit “Draw”, select “Application”,
and hit “Select All” then “OK” on the Instance List, select
“APP_CPU_TOTAL_UTIL” on the Metric List and hit “Draw”. This
will plot all of the application buckets in order of CPU
utilization.

6.0 Extract/MicrosoftTM Excel

It is possible to view data collected by the MeasureWare Agent through third-
party tools. This obviates the need to use PerfView over the wide-area
network, but requires the development of custom scripts, spreadsheets, and
graphics to view the results.

Some such development has taken place and will be summarized in what follows.
Any additional customization would be the responsibility of the local site.

It should be noted that the use of the tools described in this section
requires access to a desktop version of MicrosoftTM Excel, either Windows or
Macintosh. If no such access exists, the reader should skip to Section 7.0.

6.1 Extract

To view data collected by the MeasureWare Agent, extract the data from
MeasureWare Agent’s log files using the HP utility called “extract.” There is
a man page for extract, and it is fully documented in the compact disk (see
Section 1.2). To summarize, the following steps are required:

1. Set up a format file that the extract utility will use in extracting
the data. This format file is fully described in the documentation
but a useable sample file is at Exhibit A6-1.

A6-6

FORMAT DATAFILE
HEADINGS ON
SEPARATOR=" "
SUMMARY=5

DATA TYPE GLOBAL

 LAYOUT=SINGLE
 OUTPUT=gbl.dat

 DATE
 TIME

 GBL_CPU_TOTAL_UTIL
 GBL_MEM_UTIL
 GBL_MEM_PAGEOUT_RATE
 GBL_MEM_SWAPOUT_RATE
 GBL_DISK_UTIL_PEAK

DATA TYPE APPLICATION

 LAYOUT=MULTIPLE
 OUTPUT=app.dat

 DATE
 TIME

 APP_CPU_TOTAL_UTIL

Exhibit A6-1. Sample Format File

This format file should be called “rept.all”.

2. Extract the data by typing, at the UNIX prompt:

extract -r rept.all -m -xp d-1 -GA

All of the arguments to the extract utility are documented in the
compact disk, but the few that are relevant here can be summarized as
follows:

• The -r option tells extract that a format file is to be used; the
-r option is followed by the file name.

• The d-1 option tells extract to extract data for the previous full
day (we do this because our spreadsheets are set up to display a
full day’s worth of data).

• Finally, the -GA option informs extract that we wish to extract
both global and application data.

3. Running the extract command with the options given and with the
sample format file above will create two new files: gbl.dat and
app.dat. These filenames are specified by the OUTPUT parameters in
the sample format file. Note that these files apply only to the
server on which the extract command was run.

A6-7

An alternative way to run extract involves using a script, as displayed in
Exhibit A6-2:

 remsh $i 'if rm gbl.txt app.txt rept.all; then \
 echo OK; \
 else \
 echo not OK; \
 fi'
done

Exhibit A6-2. Sample Script.

The user planning on using this script should set up two directories under his
or her home directory, one called source and the other called results. This
user should then put the rept.all file discussed above in the source
directory, along with the script. The first two lines of the script must be
modified to reflect the user’s actual name. After running the script, the
results directory will contain eight files, named gbl.ds1, gbl.ds2, gbl.as1,
gbl.as2, app.ds1, app.ds2, app.as1, and app.as2. These eight files will
contain global and application data for the previous day for the four servers
at the local site. These eight files should now be moved, by whatever means
apply, to the desktop platform where MicrosoftTM Excel is available.

6.2 MicrosoftTM Excel

To display the data from the eight files on the desktop machine, the
MicrosoftTM Excel template file must be opened from within MicrosoftTM Excel.
Once the template file is open, it will display a special custom toolbar (see
Exhibit A6-3). (Note: The illustrations are for a Mac. The tool bars will
look similar on a PC since they are custom tool bars.)

Exhibit A6-3. Excel Toolbar.

6.2.1 Open Button

The Open button, , is used to load the template with the data from the
eight files. (Note that this button is not the same button as the Open button
which MicrosoftTM Excel supplies automatically and which sits on its own
toolbar with New and Save buttons.) In order to load data, the user should
press the button.

The template will respond with a modal OK-Cancel Dialog Box. The template will
not respond to any other user actions until the dialog box is dismissed by
pressing either the Cancel or the OK button. Pressing the Cancel button
interrupts the process of data loading; pressing the OK button initiates it.

If the OK button is pressed, the template will begin to load data from the
eight files into the template. Status messages about the progress of the load
operation are printed at the lower-left corner of the screen.

Once data are loaded, the user should press the Annotate button.

6.2.2 Annotate Button

The Annotate button, , is used to give the graphs a unique identification.
Once the user presses the Annotate button, the template responds with the
Title Selector dialog box. Enter an appropriate title into the text-edit area
and press the OK button. As usual, pressing the Cancel button at any time
interrupts the operation and leaves the title unchanged.

A6-8

After selecting the OK button, the template displays the Date Selector dialog
box. Enter an appropriate date; usually this is the previous day--that is
what the scripts are set up for. The title and date entered are used by the
template to annotate the graphs that are produced. These annotations are
useful in distinguishing graphs from one another.

6.2.3 Print Button

Use the Print button, , to print the graphs corresponding to the eight
files discussed above. Once this button is pressed, the template will respond
with a Copies Selector dialog box. Enter the number of copies wanted and
press the OK button. The template will print the graphs on the printer
attached to the desktop machine.

6.3 Modifying the MicrosoftTM Excel Template

To plot data associated with an application, the developer will need to modify
the template file. Changes need to be made to two of the worksheets in the
template. The first concerns the data worksheet, the second the graph
worksheet.

The data worksheet is worksheet 1 in the template. To add a new column, copy
an existing column to a blank area of the worksheet, directly adjacent to the
last column being used. The user should then modify the top two cells in the
column to reflect the file the data is to come from and the name of the
application that was used to set up the parm file for MeasureWare Agent (see
Section 4.0).

Then switch to the graph worksheet (worksheet 2). An existing graph should be
copied to an unoccupied area of the sheet and modified to point to the column
set up in the previous paragraph. These two steps are sufficient to allow the
developer’s data to be plotted.

7.0 ucron Utility

The ucron utility can be used to monitor cron activity. The ucron utility
produces a character-based graphic for a given day that depicts the times at
which cron jobs were started and for how long they ran. To use ucron, type:

ucron “Mmm<sp>dd”

at the command line. The surrounding quotes are required. The month for which
information is wanted must be entered as a three-letter abbreviation with an
initial capital letter. The space (<sp>) between the month and the day of the
month is required, too. The day of the month must be entered either as two
digits or as a single digit preceded by a space. Thus, to obtain a graphic
for the 4th of January, type at the command line:

ucron “Jan 4”

To obtain one for the 29 of June, type at the command line:

ucron “Jun 29”

If the cron log file for the day of interest has been deleted, an error
message is printed and the utility exits.

A6-9

The output of ucron has two parts: the first part lists the cron jobs that
cron kicked off during the day for which data was requested, the second part
displays a timeline of cron activity during the day.

The first part of the output, as was mentioned, lists the cron jobs that were
kicked off. For each cron job, the utility prints the command that cron
executed as well as a column number; the column number is used in the second
part of the output.

The second part of the output is a 24-hour timeline for the day requested.
Data is provided every minute, so that, altogether, the timeline covers 24
hours times 60 minutes. For each time interval and for each cron job, the
utility prints a symbol at the intersection of the row corresponding to the
time interval and the column corresponding to the job. Thus, to find the
activity for a particular cron job, one must examine the first part of the
output to ascertain the column of the cron job, and then trace the timeline to
determine the cron job’s activity.

The symbols printed are as follows:

• an upper-case X in the column means that the cron started and completed
in that one-minute interval;

• a slash (/) means that the cron started in the interval;
• a vertical line (|) means that it continued;
• a number sign (#) means that it completed;
• a question mark (?) is used to indicate that there was overlap in the

running of a cron job (which means that the particular job in question
is taking longer to execute than the time interval in which it is being
scheduled. Either it must be made more efficient or the time interval
must be increased.).

The output of ucron can be used to help determine when to set up cron jobs by
identifying slack time periods during which they might be scheduled. It can
also be used to determine if cron jobs are completing in a reasonable amount
of time.

8.0 UNIX Tools

Table A6-1 briefly describes some of the UNIX tools that can be used to
monitor the performance of an application. In all cases, the man page for the
utility should be consulted for detailed information about its use. See
Section 1.1 for information on how to use man pages.

Table A6-1. UNIX Tools

Utility Description

vmstat The vmstat utility displays virtual-memory statistics. It can
be used to determine if an application is forcing a lot of
paging or swapping to the disk.

iostat The iostat utility displays I/O utilization statistics for all
active disks on the system. It can be used to determine how
much additional I/O an application is causing, above the I/O
being caused by all other applications.

sar The sar utility produces system activity reports of CPU, memory,
and disk usage. The sar utility combines the functionality of
several of the other tools discussed in this section, including
vmstat, iostat, and top.

Utility Description

A6-10

ps The ps utility displays information about process states.

netstat The netstat utility displays statistics for network connections
and protocols.

top The top utility displays, in near real time, the active
processes that are consuming the most CPU.

A7-1

Appendix 7

Suggested Format for Maintenance Documentation

The format of the NWS Computer Program Series (CPS) document and the AWIPS
Application Library (AAL) document are the same. The format for external
documentation for a complete program is shown below. A different format is
used for subprograms that are part of an AWIPS local applications library
group. The subprogram format is shown in Section 2.0.

1.0 Format for complete programs

The following organization should be used in preparing documentation for
complete programs.

a. Introduction
Present a brief background discussion of the program and the reason for
developing it.

b. Methodology and Software Structure
Summarize the flow of the program and the data in clear, simple
statements that describe how the program works. Discuss any scientific
formulas and mathematical algorithms to show the scientific foundation
of the program. For C and FORTRAN programs, provide a figure to
illustrate the relationship among, as applicable, the disk files (data
files, control files, and static data), the Relational Data Base
Management System (RDBMS), the program(s) or major processes, and the
output data product(s) and/or the display. For C++ programs, provide a
class diagram which shows categories, classes, attributes, methods, and
relationships in a standard notation such as Booch-93.

c. Cautions
Describe program limitations that can affect the use of the program and
its output. Include possible operational failures and restrictions on
the interpretation of the output.

d. References
List references to the published material that is cited in the text.
The American Meteorological Society's Journal Reference System is the
accepted standard.

e. Information and Procedures for Installation and Execution
This section contains information needed by those who will be building
and using the program. There are four parts, A through D:

Part A. Program Information. This part lists the program
characteristics, system requirements, and the non-application-specific
AWIPS system and hydrometeorological data files and RDBMS data that
will be needed. This part also includes descriptions of any vendor-
specific and non-standard software usage and hardware requirements
needed by the application. The detailed contents of Part A are shown
in Exhibit A7-1.

Part B. Program File and Database Information. This part contains a
complete inventory listing of all source code for the program, a
listing of all application-specific data files used by the program, and
a description of any application-specific RDBMS databases and tables

A7-2

and database schema used by the program. The detailed contents of Part
B are shown in Exhibit A7-2.

Part C. Program Creation and Installation Procedure. This part
contains instructions for setting up the application environment, and
for building and installing the program. It also contains a listing of
any tar files in which the application source and/or data files are
provided, and a description and listing of all makefiles needed to
build the program. The detailed contents of Part C are shown in
Exhibit A7-3.

Part D. Execution Procedures and Error Conditions. This part gives
the running instructions that users are to follow, and the important
error conditions that users may encounter. This part is limited to two
pages. The detailed contents of Part D are shown in Exhibit A7-4.

If the program is sufficiently complex, a separate User's Guide should
be developed to describe its use and included as an appendix to the
documentation (see item g, below). In this case. Part D should
reference and defer to the User's Guide.

f. Figures
Include figures as a group, unless they can be intermixed with the text
for greater clarity. Make all captions descriptive. Design the
graphics so that they are comparable in quality to graphics produced by
the printer/plotter module. Graphics should be in softcopy (scanned,
screen-captured, or drawn with a graphics package), in a format
compatible with word processing packages, and incorporated into the
document. For compiled code, a figure that illustrates the program
structure by showing the main program and subprograms is optional but
recommended. There are software analysis tools available centrally to
automatically generate structure diagrams for C and FORTRAN
applications; however, results vary depending on the type and
complexity of the application. If desired, a flowchart of the program
can be located in an appendix.

g. Appendices
Include pertinent information that is not suitable for the main body of
the text. For example, error condition listings that cause the
Execution Procedure section to exceed a 2-page space limit should be
placed in an appendix. However, do list the most important error
conditions in the Execution Procedure section. If a User's Guide is
developed for the program, it should be placed here in an appendix.

An example program structure diagram is shown below. Such a diagram should
show the flow of the main program from top to bottom and the flow of the
subroutines from left to right. In this diagram, the main program, WSANAL,
references first RDOOEF, then CRSSET, and so forth. Subprogram CNTR3
references COLPT, then MAXMNI, which references ASCII. Then CNTR3 references
LABEL, which also calls ASCII.

A7-3

MAIN PROGRAM

WSANAL

SUBROUTINES

RDCOEF
CRSSET +Q
SMOOTH * COLPT
CNTR3 S))))1 MAXMN1 S))))))))Q ASCII
 * LABEL S))))))))Q ASCII
 .Q

In general, the length of the documentation for a program will reflect the
complexity of the program. In some cases, especially for relatively simple
programs, Section I, INTRODUCTION, and Section 2, METHODOLOGY and SOFTWARE
STRUCTURE, will be brief. Section 3, CAUTIONS, Section 4, REFERENCES, and
Section 7, APPENDICES may be omitted.

The contents of Parts A, B, C, and D for a full program are outlined below.
Sample formats are shown in Exhibits A7-1 through A7-4.

1.1 Contents of Part A for Programs

Part A, Program Information, contains the following information:

Program Title.
The title for the program that appears in the CPS document. The title
should be descriptive of the function of the program.

Computer Program Series (CPS) Identifier. The number given to the program
by regional or NWS headquarters, and the date of the publication. This
identifier will serve as a reference to the documentation for the program.
If the program is not part of a formal CPS, the identifier is omitted.

Section 1.0: Program Name.
The name given to the executable file, or the script, command, or menu item
that initiates the program. This section also includes the items:

a. Part Of, which is the package or suite of applications (if any) to
which the program belongs, or in which the program runs.

b. AAL Identifier and Revision Number. This will be the AAL for the
program. It is assigned by the AAL. Leave these items blank. The
revision number for the first version of a program will be ______. As
revisions are made to the program, the revision number will be assigned
by the AAL librarian.

Section 2.0: Purpose.
A brief description of what the program does, the data on which it
operates, and the output product(s), data, or display(s).

Section 3.0: Program Information.
This section includes:

A7-4

a. Development programmer(s) - the personnel responsible for designing,
coding, and testing the program.

b. Location, phone, E-mail - the site where the program was developed and
phone numbers and E-mail addresses of the developers.

c. Maintenance programmer(s) - the personnel who are responsible for the
program after development and testing are completed, and who will be
notified to make corrections, revisions, or enhancements, if necessary.

d. Location, phone, E-mail - as in (b), but for maintenance programmer(s).

e. Language - the language of the source code. Compiled programs will be
either FORTRAN 77, C, C++, or a mix of these. Interpreted programs may
be Perl, netCDF Perl, Tcl/Tk, etc. If there is a mix, each language
and interpreter is specified. Also indicated is the revision number of
the compiler or interpreter.

f. Executable Type - classification of the program as:

1) Standard - a non-interactive executable program unit consisting
primarily of a compiled main program and subprograms. The program may
have a user interface (of interpreted or compiled code) with which to
specify run parameters, will run to completion with no further user
input after the initialization parameters are specified. A standard
program may also be initiated by a cron job, a script, from the command
line, or by another application.

2) Interactive - a program with a user interface and a child process
which both remain active while data and/or the display are being
modified or operated upon by the application.

3) Interpreted - a program or module comprised of non-compiled code
such as shell scripts, Perl, or Tcl/Tk. An interpreted module (e.g., a
UI built in Tcl/Tk) may be a part of an Interactive or Standard
program.

g. Running time - the approximate running times (CPU time and Clock time)
in whole seconds, when (if allowed by the application) run at the same
time that normal AWIPS processes are running on the host machine(s).
This applies to major subprocesses of primarily-interactive
applications, not to the user interactions with the interface.

h. Disk space - the total required disk space in units of bytes. A
separate total is given for the executable program files, for all
application-specific data files combined, and for application-specific
RDBMS usage. It may be necessary to estimate requirements for data
file space. The estimate should reflect a probable upper limit.

i. Host Machine(s) - The hosts (check all that apply) on which major
processes of the properly-configured program run. Does not include NFS
access of data files residing on another machine's disks, or export of
displayed output to another machine's monitor.

Section 4.0: AWIPS Data File/Data Base Access (non-application-specific).
This section documents the program's usage of existing AWIPS data sets from
flat files and from the RDBMS. It is broken down into three subsections,
described below.

A7-5

Section 4.1: Data File Usage (flat files).
This section includes the following:

a. Accesses AWIPS System/HydroMet Data Files? - enter YES or NO in the
space indicated. If yes, then fill in list in b, below.

b. List of AWIPS System/HydroMet Data Files accessed by the program. This
is a table with columns for the following:

TYPE - the data type; e.g., Grids, Satellite, METARs, RAOBs

FORMAT - the file format; e.g., netCDF, native, plotfile

Subtype(s)/Subdirector(ies) - for grids, radar, satellite, or other
data with various resolutions, channels, sources, etc., indicates the
specific data accessed by the application (normally distinguished by
their data subdirectories). Enter each subtype on a separate line,
or enter ALL if application uses, or has a choice of, any or all
subtypes.

READ/WRITE - enter R if the file is read by the application, W is the
file is written or modified by the application, R/W if both.

Section 4.2: AFOS/Text Database Product Usage
This section includes the following:

a. Accesses AWIPS Text Database? - enter YES or NO in the space indicated.
If yes, then fill in list in b, below.

b. List of AWIPS Text Database products accessed by the program. This is
a table with columns for the following:

ID - The AWIPS PIL of the product read or created by the program, in
cccNNNxxx format. The specific NNN product IDs are mandatory. Note
that specific identifiers are capitalized; for example, a specific
surface observation (METAR) is WBCMTRIAD. Generalized identifiers
are not. A generalized METAR is cccMTRxxx. Site configurability or
localization requirements for ccc and xxx should be indicated in
COMMENTS.

READ/WRITE - enter R if the product is read by the application, W if
the product is written to the Text Database by the application, R/W
if both.

COMMENTS - Any other important information related to how the
individual text products are handled by the program. If written PIL
is not a known or existing ID, indicate in COMMENTS section.

Section 4.3: AWIPS RDBMS Database/Table Usage
This section lists all data directories and data files that are specific to
this application program, both input and output data files. This section
includes the following:

a. Accesses AWIPS Informix Database Tables? - enter YES or NO in the space
indicated. If yes, then fill in (b), below.

b. List of AWIPS RDBMS items accessed by the program. This is a table
with columns for the following:

A7-6

dbspace - the Informix dbspace under which the AWIPS database is
located

DATABASE NAME - the name of the AWIPS Informix database used by the
application

TABLE NAME - the name of the table in the given database

PRIVILEGES - the privileges required for the application to use the
database table

Section 5.0: Portability
This section contains two items:

a. Vendor-Specific Hardware Requirements - describe any dependencies that
the program has on specific pieces of hardware.

b. Non-Standard OS/Software/Compiler Extensions - describe any non-
standard operating system dependencies, any extensions to the ANSI
standards and/or exceptions to the AWIPS guidelines for the high-level
languages (C, C++, FORTRAN) that are used in the source code, and any
vendor-specific compilation options required by the code.

1.2 Contents of Part B for Programs

Part B, Program File and Database Information, contains the following
information:

Program Title.
As shown in Part A.

Section 1.0: PROGRAM FILE INFORMATION
This section contains listings of all source and data files specific to the
application. It consists of two subsections:

Section 1.1: Source file inventory
This section lists all source code directories and files needed to build
the executable program. It contains two items:

a. Directory Name - the absolute pathname for the single directory which
contains the files listed in (b). If the files are packaged in a tar
file, this should match the directory under which the files will be
restored when the files are extracted.

b. List of AWIPS System/HydroMet Data Files accessed by the program. This
is a table with columns for the following:

FILE LISTING - this is a list of all source code files (makefiles
included) for the program that are in the directory indicated in (a),
above. This listing is extracted from the columnar format produced
by the HP-UX ls command with the -l -o -g -F options in effect. A
sample ls output line is shown below:

-rw-r--r-- 1 10190 Feb 11 1997 hmHMU_convGridToEarthWindComp.f

The file type and permissions (-rw-r--r--) and the number of links to
the file (1) should be removed from the listing, leaving:

A7-7

10190 Feb 11 1997 hmHMU_convGridToEarthWindComp.f

where 10190 is the file size in bytes, the next element (Feb 11
1997) is the last modification date/time (or date/year if older than
6 mos.), and hmHMU_convGridToEarthWindComp.f is the full file name.

LANGUAGE - indicates the programming language for the source code
contained in the file.

Items (a) and (b) above are repeated for each source code directory
pertaining to the program.

Section 1.2: Application-Specific data file inventory
This section lists all data directories and data files that are specific to
this application program, both input and output data files. This section
includes the following:

a. Uses Application-Specific Data Files? - enter YES or NO in the space
indicated. If yes, then fill in (b) and (c), below.

b. Directory Name - the absolute pathname for the single directory which
contains the files listed in (b). If the files are packaged in a tar
file, this should match the directory under which the files will be
restored when the files are extracted.

c. List of files accessed or created by the program. This is a table with
columns for the following:

FILE LISTING - this is a list of all data files for the program that
are in the directory indicated in (a), above. The format of this
listing is extracted from the columnar format produced by the HP-UX
ls command (see item b in Part B, Section 1.1, Source File
Inventory). For the case where new-named files are created by each
run of the program, show the template for the filename surrounded by
<angle> brackets and define the template immediately below the
listing.

FORMAT - the format of the data file: ASCII, binary, netCDF,
shapefile, Informix unload file, etc.

R/W/C/T - file status and disposition. Enter R if the file is read by
the application, W if the product is written to or modified by the
application, C if the file is newly created when the application is
run, and T if the file is supposed to be a temporary file. Enter as
many as apply, separate by slashes, e.g., R/W/C.

Items (b) and (c) above are repeated for each datafile directory pertaining
to the program.

Section 1.3: File Disposition
This section should provide a set of comments relating to file status and
disposition for each file is Section 1.2. Comments tell the user briefly
how the data sets are created if they do not already exist. For output
files or temporary files, comments tell the user the status and disposition
of each file, whether the file is created by the user or the program, and
whether the file is left on disk after the program completes.

Section 2.0: RDBMS INFORMATION

A7-8

This section will be filled in for applications which use their own RDBMS
tables. It consists of three subsections.

Section 2.1: Database/Table Usage
This section lists all data directories and data files that are specific to
this application program, both input and output data files. This section
includes the following:

a. Uses Application-Specific Informix Database Tables? - enter YES or NO
in the space indicated. If yes, then fill in (b) and Sections 2.2 and
2.3, below.

b. List of application-specific RDBMS items accessed by the program. This
is a table with columns for the following:

dbspace - the Informix dbspace under which the application's database
is created

SIZE - the size of the disk allocation for the dbspace containing the
database(s), in the units of 2 kilobyte disk pages

DATABASE NAME - the name of the Informix database used by the
application

TABLE NAME - the name of the table in the given database

Section 2.2: Database Schema
This section contains information on table and column definitions, data
types, lengths, key definitions, constraints, indexes, default values,
privileges, etc., needed to recreate the tables in the database. The
dbschema command for Informix can create a listing of commands needed to
recreate the database and tables, and this information can be saved to a
file. In that case, an inventory and description of the files that contain
the schema can constitute the information in this section. If the database
tables are created by another program through ESQL, then this section may
consist of a reference to that program's CPS.

Section 2.3: Data Dictionary
This section lists the plain-language definitions for the variables in each
column in the database tables in (b), above. Indicates units, range,
format, case sensitivity, optionality, and business rules applying to the
variable.

1.3 Contents of Part C for Programs

Part C, Program Creation and Installation Procedure, contains the following
information:

Program Title.
As shown in Part A.

Section 1.0: tar File Information
This section includes the following:

a. tar file(s) provided? - enter YES or NO in the space indicated. If
yes, then fill in (b), below.

A7-9

b. MEDIUM - If the tar files are delivered on a portable magnetic or
optical medium, this indicates the type; e.g., 8mm tape, optical.

c. LABEL - the identification on the label applied to the disk or tape.

d. Listing of tar files containing the program's source code and data
files. The format of this listing is extracted from the columnar
format produced by the HP-UX ls command (see item b in Part B, Section
1.1, Source File Inventory).

Section 2.0: Program Creation and Installation
This section gives the details of the environment set-up needed for the
program to correctly run, and the versions of the operating system,
compilers, and other packages under which the executable code is built and
run. It also describes procedures for installation of the executable
program. There are four subsections to this section.

Section 2.1: Makefiles
This section should describe all makefiles associated with building the
program, their locations in the source tree, their interdependencies, and
order of execution. If the makefiles are not included in the source file
inventory of Section 1.1 of Part B, then an inventory should be included
here.

Note that if makefiles are not provided with the package (an undesirable
option), then this section must include a full set of the compile and link
command lines needed to build the program, including references to
libraries (AWIPS and/or standard). The use of makefiles is strongly
recommended.

Section 2.2: Application Environment
This section documents the types and versions of the operating system,
compilers, and other COTS (Commercial, Off-The-Shelf) packages under which
the executable code is built and run. It includes the following items:

a. Operating System and Version - e.g., HP-UX 10.20

b. Compiler/Interpreter and Version - e.g., HP FORTRAN 9000 version 9.0.
This item is repeated for as many compilers, interpreters (e.g.,
Tcl/Tk), and COTS code packages as are involved in the program code.

c. Environment Variables - Lists the names and definitions of all
environment variables that need to be set for the application to be
built and run. Only include those that are in addition to the AWIPS
system environment variables required to be defined for AWIPS libraries
or resources that are used by the application. The following four
items are to be listed:

- NAME: the full name of the environment variable

- DEFINITION: the value of the environment variable

- RUN/SETUP: indicates whether the variable is needed for runtime (R)
or for setup/creation of the program (S), or both (R/S)

- SCOPE

Section 2.3: Detailed Installation Procedures

A7-10

This section describes all the steps involved in setting up the
environment, configuring the system, building the application, installing
the executables, and, as needed, file decompression, relationships to other
programs, creating and initializing the data files, creation and loading of
RDBMS tables, setting up cron jobs and scripts, and directions on running
scripts to automatically perform any of the above.

Section 2.4: Installation Scripts
This section provides an inventory of any scripts that have been developed
to automate the process of setting up the program build and runtime
environments, and building and installing the program. It includes the
following:

a) Directory Name - the absolute pathname for the single directory which
contains the files listed in (b). If the files are packaged in a tar
file, this should match the directory under which the files will be
restored when the files are extracted.

b) List of script files needed by the program. This is a table with
columns for the following:

FILE LISTING - this is a list of all script files for the program that
are in the directory indicated in (a), above. The format of this
listing is extracted from the columnar format produced by the HP-UX
ls command (see item b in Part B, Section 1.1, Source File
Inventory).

SHELL - indicates the programming shell language for the commands
contained in the script.

Items (a) and (b) repeat for each directory containing program-related
scripts.

1.4 Contents of Part D for Programs

The contents of Part D, Execution Procedures and Error Conditions, are
outlined below. A sample format is shown in Exhibit A7-4. A sample program
is shown in Appendix E.

Part D (of Subsection e, above) contains the following information:

Computer Program Series (CPS) Identifier.
Same as Part A.

Program Title.
Same as Part A.

Program Name.
Same as Part A.

AAL Identifier and Revision Number.
Same as Part A.

Program Execution.
List the steps that the user should follow in running the program. Any
additional programs that must be run prior to running the program are
indicated by their AAL identifier, CPS reference, or other generally
recognized label. The commands and options/switches are specified and

A7-11

examples given. Completion messages should be given in a form that the
user will recognize easily.

Error Conditions.
A list of possible error conditions that the user may encounter in an
operational setting. Most disk processing error returns (reading or
writing) do not have to be included. However, programmed display messages
to the user are necessary, especially if user action is required. The list
of error conditions in this section should cite the messages that the user
will see during execution, the location (logfile or screen) where the user
will see them, a straightforward and clear description of what the error
messages mean, and a course of action for the user to follow as a response.

2.0 Documentation Format for a Subprogram

The information required for the external documentation of a subprogram is
nearly the same as that required for programs. All subprograms (functions,
subroutines) that are modules of a library or are expected to be used in more
than one program should be externally documented. The following organization
should be used in preparing documentation for subprograms.

a. Introduction
Present a brief background discussion of the subprogram and the reason
for developing it.

b. Methodology and Software Structure
Summarize the flow of the subprogram and the data in clear, simple
statements that describe how the subprogram works. Discuss any
scientific formulas and mathematical algorithms to show the scientific
foundation of the program.

For subprograms that call lower routines or have direct inputs or
outputs (i.e., other than the passed parameters), provide a figure to
illustrate the relationship among, as applicable, the disk files (data
files, control files, and static data), the Relational Data Base
Management System (RDBMS), lower-level subprogram(s) or major
processes, and the direct output data and/or the display. For C++,
provide a class diagram which shows categories, classes, attributes,
methods, and relationships in a standard notation such as Booch-93.

c. Information and Procedures for Installation and Execution
This section contains information needed by those who will be compiling
and using the subprogram. There are four parts, A through D:

Part A. Subprogram Information. This part lists the subprogram
characteristics, system requirements, and the non-application-specific
AWIPS system and hydrometeorological data files and RDBMS data that
will be needed. This part also includes descriptions of any vendor-
specific and non-standard software usage and hardware requirements
needed by the application. The detailed contents of Part A are shown
in Exhibit A7-5.

Part B. Subprogram File and Database Information. This part contains
a complete inventory listing of all source code for the subprogram, a
listing of all application-specific data files used by the subprogram,
and a description of any application-specific RDBMS databases and
tables and database schema used by the subprogram. The detailed
contents of Part B are shown in Exhibit A7-6.

A7-12

Part C. Program Creation and Installation Procedure. This part
contains instructions for setting up the application environment, and
for building and installing the subprogram. It also contains a listing
of any tar files in which the application source and/or data files are
provided, and a description and listing of all makefiles needed to
build the subprogram. The detailed contents of Part C are shown in
Exhibit A7-7.

Part D. Manual Page for Programmers. This part is intended to give
all the information that a programmer needs in order to use the
subprogram in an application. It is an adaptation of the format and
content of the man page for UNIX utilities. It includes calling
parameters, include files, error codes, language, limitations, and an
example of use. The detailed contents of Part D are shown in Exhibit
A7-8.

The contents and instructions for Parts A, B, C, and D are outlined below.
Sample formats are shown in Exhibits A7-5 through A7-8.

2.1 Contents of Part A for Subprograms

Part A, Subprogram Information, contains the following information:

Subprogram Title.
The title for the subprogram that appears in the CPS document. The title
should be descriptive of the function of the subprogram.

Computer Program Series (CPS) Identifier. The number given to the
subprogram by NWS headquarters, and the date of the publication. This
identifier will serve as a reference to the documentation for the
subprogram. If the subprogram is not part of a formal CPS, the identifier
is omitted.

Section 1.0: Subprogram Name.
The name given to the subprogram as defined in the code and used in the
call to the subprogram. This section also includes the items:

a. Library Name is the name of the library to which the subprogram
belongs.

b. AAL Identifier and Revision Number. This will be the AAL for the
subprogram. It is assigned by the AAL. Leave these items blank. The
revision number for the first version of a subprogram will be ______.
As revisions are made to the subprogram, the revision number will be
assigned by the AAL librarian.

Section 2.0: Purpose.
A brief description of what the subprogram does, the data on which it
operates, and the output product(s), data, or display(s).

Section 3.0: Subprogram Information.
This section is the same as for program documentation, except for:

f. Executable Type - not required

g. Running time - not required

A7-13

h. Disk space - the subtotal given for the subprogram files is for the
object files.

i. Host Machine(s) - not required

Section 4.0: AWIPS Data File/Data Base Access (non-application-specific).
This section is the same as for program documentation.

Section 4.2: AFOS/Text Database Product Usage
This section is the same as for program documentation.

Section 4.3: AWIPS RDBMS Database/Table Usage
This section is the same as for program documentation.

Section 5.0: Portability
This section is the same as for program documentation.

2.2 Contents of Part B for Subprograms

Part B, Subprogram File and Database Information, contains the same
information as for program documentation, except for the following:

Section 2.2: Database Schema
If this information has been documented for a main program, this section
should consist of a reference to that program's CPS. If not, then this
section contains the same information as for program documentation.

Section 2.3: Data Dictionary
If this information has been documented for a main program, this section
should consist of a reference to that program's CPS. If not, then this
section contains the same information as for program documentation.

2.3 Contents of Part C for Subprograms

Part C, Subprogram Creation and Installation Procedure, contains the same
information as for program documentation.

2.4 Contents of Part D for Subprograms

The contents of Part D, Manual Page for Programmers, are outlined below. A
sample format is shown in Exhibit A7-8.

Computer Program Series (CPS) Identifier.
Same as Part A.

NAME
This section contains two items:

a. routine_name - the name of the function or subroutine as it appears in
the call

b. a short, one-sentence description of the functionality of the module

SYNOPSIS
This section lists all include files needed to use the subroutine in the
calling routine, any FORTRAN COMMON used, and shows the calling sequence as
shown in Exhibit A7-8.

A7-14

DESCRIPTION
This section consists of six parts:

a. A complete but concise description of the routine, with enough detail
to let another application programmer determine what the routine does,
and how it works. It should describe basic algorithms, list
references, describe limitations on use, etc.

b. A list of calling parameters. List parameters by name, show data type
and input/output usage, and define all parameters individually as shown
in Exhibit A7-8. If FORTRAN COMMON variables are used for input or
output, indicate these variables and any block labels in the list.

c. OUTPUT - This section describes all direct outputs such as file
creation, file writes, and error logs and messages.

d. RESTRICTIONS - Describes any limitations on use of the subroutine
(singularities, size restrictions, disallowed parameter values, etc.).

e. COMMENTS - Optional information about the algorithm, code history, etc.

f. LANGUAGE - The language in which the subroutine or function is written.

RETURN VALUES
This section lists the return values and their data types, with a short
description of each.

ERRORS
This section lists the valid errors for the subprogram. Each entry
contains two items:

a. ErrorCode - the value of the returned error code

b. a plain-language description of the error corresponding to the error
code

EXAMPLES
This section shows one or more source code examples containing a call to
the function or subroutine, with all calling arguments defined and
dimensioned, and all necessary include files declared. It should be a
reasonably complete and useful snippet of code, not just a single line of
code with the call to the subprogram.

SEE ALSO
This section should list the names of any related or subordinate functions
or subroutines for which there are manual pages of documentation; for
instance, a callable higher-level subroutine with more functionality.

A7-15

EXHIBITS for Appendix 7

PROGRAM DOCUMENTATION:

Exhibit A7-1. Contents and format for PART A: PROGRAM INFORMATION.

Exhibit A7-2. Contents and format for PART B: PROGRAM FILE AND DATABASE
INFORMATION.

Exhibit A7-3. Contents and format for PART C: PROGRAM CREATION AND
INSTALLATION PROCEDURE.

Exhibit A7-4. Contents and format for PART D: PROGRAM EXECUTION AND ERROR
CONDITIONS.

SUBPROGRAM DOCUMENTATION:

Exhibit A7-5. Contents and format for PART A: SUBPROGRAM INFORMATION.

Exhibit A7-6. Contents and format for PART B: SUBPROGRAM FILE AND DATABASE
INFORMATION.

Exhibit A7-7. Contents and format for PART C: SUBPROGRAM CREATION AND
INSTALLATION PROCEDURE.

Exhibit A7-8. Contents and format for PART D: MANUAL PAGE FOR PROGRAMMERS.

A7-16

PROGRAM TITLE

PART A: PROGRAM INFORMATION

1.0 PROGRAM NAME: AAL ID:
 PART OF: Revision no.:

2.0 PURPOSE:

3.0 PROGRAM INFORMATION

Development Programmer(s):
 Location:
 Phone:
 E-Mail:

Maintenance Programmer(s):
 Location:
 Phone:
 E-Mail:

Program Language(s): Executable Type:
(e.g. C, FORTRAN, Tcl/Tk) (Standard, Interactive, Interpreted)

Nominal Running time - CPU seconds: CLOCK seconds:

Disk space - Executable file totals: bytes
Application-specific data file totals: bytes
RDBMS table totals: bytes

Host Machine(s): Workstation X-Terminal AS DS

4.0 AWIPS Data File/Data Base Access (non-application-specific)

4.1 Data File Usage (flat files)

Accesses AWIPS System/HydroMet Data Files (YES or NO):

TYPE FORMAT Subtype(s)/Subdirector(ies) READ/WRITE

4.2 AFOS/Text Database Product Usage

Accesses AWIPS Text Database (YES or NO):

ID READ/WRITE COMMENTS

4.3 AWIPS RDBMS Database/Table Usage

Accesses AWIPS Informix Database Tables (YES or NO):

dbspace DATABASE NAME TABLE NAME PRIVILEGES

5.0 Portability

Vendor-Specific Hardware Requirements:

A7-17

Non-Standard OS/Software/Compiler Extensions:

Exhibit A7-1. Contents and format for PART A: PROGRAM INFORMATION.

A7-18

PROGRAM TITLE

PART B: PROGRAM FILE AND DATABASE INFORMATION

1.0 PROGRAM FILE INFORMATION

1.1 Source file inventory

Directory Name (Absolute):

File Listing:
 SIZE DATE/TIME FILENAME LANGUAGE
 10190 Feb 11 1997 hmHMU_convGridToEarthWindComp.f FORTRAN

.

. (Repeat Directory Name and File Listing for each directory)

.

1.2 Application-Specific data file inventory

Uses Application-Specific Data Files (YES or NO):

Directory Name (Absolute):

File Listing:
 SIZE DATE/TIME FILENAME FORMAT R/W/C/T

.

. (Repeat Directory Name and File Listing for each directory)

.

1.3 File Disposition

2.0 RDBMS INFORMATION

2.1 Database/Table Usage

Uses Application-Specific Informix Database Tables (YES or NO):

dbspace SIZE (2K pages) DATABASE NAME TABLE NAME

2.2 Database Schema

2.3 Data Dictionary

Exhibit A7-2. Contents and format for PART B: PROGRAM FILE AND DATABASE
INFORMATION.

A7-19

PROGRAM TITLE

PART C: PROGRAM CREATION AND INSTALLATION PROCEDURE

1.0 tar File Information

tar file(s) provided (YES or NO):

MEDIUM: LABEL:

File Listing:
 SIZE DATE/TIME FILENAME

2.0 Program Creation and Installation

2.1 Makefiles

2.2 Application Environment

Operating System: Version:

Compiler/Interpreter: Version:
 .
 . (Repeat Compiler/Interpreter and Version for each used)
 .

Environment Variables:

NAME DEFINITION RUN/SETUP SCOPE

2.3 Detailed Installation Procedures

2.4 Installation Scripts

Directory Name (Absolute):

File Listing:
 SIZE DATE/TIME FILENAME SHELL

.

. (Repeat Directory Name and File Listing for each directory)

.

Exhibit A7-3. Contents and format for PART C: PROGRAM CREATION AND
INSTALLATION PROCEDURE.

A7-20

PROGRAM TITLE

PART D: PROGRAM EXECUTION and ERROR CONDITIONS

PROGRAM NAME: AAL ID:
Revision no.:

PROGRAM EXECUTION

1. This section is probably highly inadequate for AWIPS.

2.

3.

ERROR CONDITIONS

ERROR LOG MESSAGES MEANING

1-

2-

SCREEN MESSAGES MEANING

1-

2-

Exhibit A7-4. Contents and format for PART D, PROGRAM EXECUTION AND ERROR
CONDITIONS.

A7-21

SUBPROGRAM TITLE

PART A: SUBPROGRAM INFORMATION

1.0 SUBPROGRAM NAME: AAL ID:
 LIBRARY NAME: Revision no.:

2.0 PURPOSE:

3.0 SUBPROGRAM INFORMATION

Development Programmer(s):
 Location:
 Phone:
 E-Mail:

Maintenance Programmer(s):
 Location:
 Phone:
 E-Mail:

Subprogram Language(s):

Disk space - Object file totals: bytes
Application-specific data file totals: bytes
RDBMS table totals: bytes

4.0 AWIPS Data File/Data Base Access (non-application-specific)

4.1 Data File Usage (flat files)

Accesses AWIPS System/HydroMet Data Files (YES or NO):

TYPE FORMAT Subtype(s)/Subdirector(ies) READ/WRITE

4.2 AFOS/Text Database Product Usage

Accesses AWIPS Text Database (YES or NO):

ID READ/WRITE COMMENTS

4.3 AWIPS RDBMS Database/Table Usage

Accesses AWIPS Informix Database Tables (YES or NO):

dbspace DATABASE NAME TABLE NAME PRIVILEGES

5.0 Portability

Vendor-Specific Hardware Requirements:

Non-Standard OS/Software/Compiler Extensions:

Exhibit A7-5. Contents and format for PART A: SUBPROGRAM INFORMATION.

A7-22

SUBPROGRAM TITLE

PART B: SUBPROGRAM FILE AND DATABASE INFORMATION

1.0 SUBPROGRAM FILE INFORMATION

1.1 Source file inventory

Directory Name (Absolute):

File Listing:
 SIZE DATE/TIME FILENAME LANGUAGE
 10190 Feb 11 1997 hmHMU_convGridToEarthWindComp.f FORTRAN

.

. (Repeat Directory Name and File Listing for each directory)

.

1.2 Application-Specific data file inventory

Uses Application-Specific Data Files (YES or NO):

Directory Name (Absolute):

File Listing:
 SIZE DATE/TIME FILENAME FORMAT R/W/C/T

.

. (Repeat Directory Name and File Listing for each directory)

.

2.0 RDBMS INFORMATION

2.1 Database/Table Usage

Uses Application-Specific Informix Database Tables (YES or NO):

dbspace SIZE (2K pages) DATABASE NAME TABLE NAME

2.2 Database Schema

2.3 Data Dictionary

Exhibit A7-6. Contents and format for PART B: SUBPROGRAM FILE AND DATABASE
INFORMATION.

A7-23

SUBPROGRAM TITLE

PART C: SUBPROGRAM CREATION AND INSTALLATION PROCEDURE

1.0 tar File Information

tar file(s) provided (YES or NO):

MEDIUM: LABEL:

File Listing:
 SIZE DATE/TIME FILENAME

2.0 SUBPROGRAM Creation and Installation

2.1 Makefiles

2.2 Application Environment

Operating System: Version:

Compiler/Interpreter: Version:
 .
 . (repeats for each compiler/interpreter)
 .

Environment Variables:

NAME DEFINITION RUN/SETUP SCOPE

2.3 Detailed Installation Procedures

2.4 Installation Scripts

Directory Name (Absolute):

File Listing:
 SIZE DATE/TIME FILENAME SHELL

.

. (Repeat Directory Name and File Listing for each directory)

.

Exhibit A7-7. Contents and format for PART C: SUBPROGRAM CREATION AND
INSTALLATION PROCEDURE.

A7-24

SUBPROGRAM TITLE

PART D: MANUAL PAGE FOR PROGRAMMERS

NAME

routine_name - one-sentence description of the routine's functionality

SYNOPSIS

Lists all necessary #include's, and shows the full call sequence, as below.

#include ...
#include ...

int routine_name (first parameter,
one parameter per line,
last parameter);

DESCRIPTION

Provide a complete but concise description of the routine--enough detail to let a potential user
determine what the routine does, and how it works. Give algorithms, references, etc. Bold and
italicize the parameter names when they are included in this description. List by name, show
data type and input/output usage, and define all parameters individually as shown below. If
specific units are required for a parameter that is a physical variable, be sure to
indicate that information.

parameter_name - provide a description in sentence form. (TYPE) (INPUT/OUTPUT)
 OUTPUT:

Describe all direct outputs such as file creation, file writes, and error logs and messages.

 RESTRICTIONS:

Describe any limitations on use of the subroutine (singularities, size restrictions, disallowed
parameter values, etc.).

 COMMENTS:

Optional information about the algorithm, code history, etc.

 LANGUAGE: The language in which the subroutine or function is written.

RETURN VALUES

List the return values and data types, with a short description of each. Include units for physical
variables.

ERRORS

List the valid error codes (if any) and describe each, as below.

ErrorCode - description

A7-25

EXAMPLES

Show a source code example of a call to the function or subroutine, with all calling variables
defined and (if FORTRAN) dimensioned, and all necessary include files declared in the
calling code.

SEE ALSO

None , or list the names of any related or subordinate routines for which there are manual pages
of documentation.

Exhibit A7-8. Contents and format for PART D: MANUAL PAGE FOR PROGRAMMERS.

ATT1-1

Attachment 1

TDL FORTRAN Coding Guidelines

ATT1-2

METEOROLOGICAL DEVELOPMENT LABORATORY
FORTRAN SOFTWARE DEVELOPMENT AND DOCUMENTATION GUIDELINES

FOR AWIPS DESIGN, DEVELOPMENT, AND TESTING TEAMS

Harry R. Glahn

1. INTRODUCTION

The software development and documentation guidelines contained in this
document were created for use by the Design, Development, and Testing (DDT)
Teams for the development of applications for AWIPS. These are teams led by
Meteorological Development Laboratory employees and include support
contractors, including the AWIPS contractor, PRC.

Perhaps it is just as important to say what this document is not, as to say
what it is. It is not intended to describe a complete software development
method, complete with design documents, code reviews, test procedures, etc.
Those are important concepts and are being implemented according to the
Software Development Plan (Meteorological Development Laboratory 1995).

The critical importance of developing well documented and well structured
code has become more obvious with time. Except for, possibly, some small
programs/subroutines written exclusively to test an idea or structure that
will soon be discarded, Government developed software will be inherited and
maintained by others. "Tricky" coding in the name of efficiency is to be
avoided (although the definition of tricky will vary with individual).

It is imperative that we follow good coding and documentation rules in the
development of all code, and in particular code that is to be handed off for
use outside of TDL. Reasons include:

! Most development today involves more than one person. With several
persons involved in a project, it is important that guidelines be
followed so that all can easily "read" another person's program.

! Usually, it will fall to someone other than the originator to modify or
maintain a program at some time in the future. Again, if a program has
been written and documented according to prescribed rules, revisions and
maintenance are much easier. This applies to external documentation as
well as the code itself.

! Code developed by the DDTs is for the express purpose of implementation
and integration into a much larger system. If all such code (including
locally-developed code form the field) follows the same guidelines,
understanding and dealing with it will be much easier, and we will be
able to answer questions more readily than otherwise. Documentation
will, of course, be mandatory.

! Standardization will reduce errors in coding and keystroking. The eye
and mind become accustomed to "patterns," and a break in pattern may be
an error. If there are no established patterns in the code, or if the
patterns are considerably different from those to which the reader is
accustomed, this human error detection feature cannot operate
effectively.

! Converting a body of software from one computer system to another is
easier if it is all written and documented to the same standards.

ATT1-3

! Persons writing code and having it keystroked by others need not explain
a preferred format; it will already be defined. Documentation may be
assigned to a person other than the one writing the code; an established
procedure makes individual coordination on a documentation format
unnecessary.

! New employees with little or no programming experience can be more easily
trained in good procedures if those procedures are written down and
everyone follows them.

! Some simple optimization procedures, if followed, can reduce execution
time considerably. However, the primary purpose for these guidelines is
not central processor optimization. Also, what is optimum for one system
may not be for another.

In summary, the objectives of these guidelines are to enhance clarity,

testability, maintainability, and person-to-person and computer-to-computer
transferability of software throughout its life cycle.

Any system of software guidelines or standards is somewhat arbitrary.
Different organizations have different standards, and textbooks do not agree.
It is not so important exactly what the guidelines are, as it is that there be
guidelines (assuming some semblance of reasonableness, of course).

This document contains coding guidelines for FORTRAN; a companion document
contains guidelines for the C language.

2. FORTRAN CODING GUIDELINES

The programming language to be used is the version of FORTRAN appropriate to
the platform for which the code is intended. FORTRAN 77 (or its successor
FORTRAN 90 when available) shall be used whenever available. Vendor-specific
extensions to the FORTRAN 77 standard can be used when they conform to FORTRAN
90 standards; when they do not, they should not be used unless absolutely
necessary.

Appendix 1 of the AWIPS Application Integration Framework Manual (AIFM)
provides a code example to which the reader should refer when reading the
following guidelines.

Documentation Block - Every program and subroutine must start with a
documentation block following the outline in AIFM Appendix 1. Starting column
convention is imposed to promote readability. Generally, in the absence of
specific guidelines, standard typing rules should be used in preparing the
documentation. If the system being used supports lower case characters as
well as upper case, then it is optional which is used for the documentation
block. Lower case for documentation does distinguish that material from
executable code (which shall be upper case) but does add a degree of
complexity and non-uniformity among programs/programmers.

Program Name - The first line should be the subroutine name starting in
Col. 7. If it is a main program, and the compiler doesn't permit a program
name, substitute a Comment statement with the program name.

Date, Programmer, Organization, Computer - Maintaining the exact date is not
important; it is not used, for example, as the date the routine was added to
the library. The month and year are sufficient. Starting in Col. 10, the
date, the programmer's name, TDL, and the computer system the program was

ATT1-4

written for are each put on the third line, after a blank comment line,
separated by three spaces. Extra lines should be used here to indicate
modification dates, etc., as appropriate. Spacing may be adjusted to "line
up" names, etc.

Purpose - Following another blank line, the next line should contain the
word PURPOSE starting in Col. 10. Following that will be a short paragraph
explaining the purpose of the routine. This need not be extensive, as
details can be placed in the program writeup (external documentation).
However, it should be complete enough to be useful to the user. If the
routine was written specifically for a calling routine, the comment CALLED
BY XXX is useful. Start all lines in this paragraph in Col. 14.

Data Set Use - After the paragraph on "purpose" and a blank line, the next
line should contain DATA SET USE starting in Col. 10. Listed below this
line will be data set names followed by a brief explanation of them (see
AIFM Appendix 1). The explanation should state whether the data sets are
input, output, or internal. If no data sets are used by this routine, put
NONE on the line following DATA SET USE.

Variables - The statement following those explaining data set use should
contain the word VARIABLES starting in Col. 10. Following that, most, if
not all, variables used in executable statements in the program should be
defined in the format shown in AIFM Appendix 1. The equal sign should be in
Col. 23 followed and preceded by one space. All lines except the one
defining the variable start in Col. 25 unless some further indention seems
appropriate, such as in lists. (Standardization here will allow copying
from one routine to another when the variable is used in more than one
routine. However, many times the explanation will have to be changed
slightly for it to pertain to a particular routine.) Variables appearing
only in COMMON need not be defined, but when a variable is used in COMMON
and in other places in the routine, it must be defined. Variables used only
to pass on to another subroutine should be defined, but is not mandatory.
The cross reference list of the compiled source will identify where the
variable is passed on.

List all variables in the subroutine call sequence, if any, first and in
order. No other ordering is mandatory, but some logical sequence should be
used and the best one to use may depend on the routine. The ordering might
be alphabetical, especially if there are many variables. The order could be
the approximate order the variables are first used in the program,
especially the input variables; having the definitions of the input
variables from an external source all in one place, and in order, has proven
to be very useful. For each variable that is in the call sequence, place at
the end of the comment either (INPUT), (OUTPUT), (INPUT-OUTPUT) or
(INTERNAL) to indicate its use in the subroutine. (This is not appropriate
for a main program.) This should also be done for variables actually used
that are in COMMON. If, and only if, the type of variable is other than
INTEGER*4 or REAL*4, place the type in parentheses at the very end of the
comment, e.g., (CHARACTER*5).

Another option for grouping variables (other than those in the call
sequence) is to have sections headed INPUT, OUTPUT, etc. (starting in Col.
14) and to put the appropriate variables under these headings.

Non-System Subroutines Used - The non-system subroutines used in the program
are listed, separated by a comma and space and indented to Col. 14,

ATT1-5

following the section heading NON-SYSTEM SUBROUTINES USED, starting in Col.
10.

Declarative and Data Statements - Such statements, if any, should immediately
follow the documentation block. An order such as PARAMETER, COMMON, TYPE,
DIMENSION, EQUIVALENCE, and DATA is appropriate. Always use PARAMETER first,
and DATA last.

PARAMETER - PARAMETER statements shall define a variable only where a DATA
statement will not suffice, namely, in the definition of variable array
dimensions or, rarely, when a computation is desired within the definition
to retain the computed formula. The cross-reference lists provided by some
compilers do not treat variables defined with PARAMETER statements the same
way as other variables, and some ignore them altogether; this makes checkout
more difficult. This convention will let the user know that any variables
defined in PARAMETER statements are variable dimensions.

COMMON Blocks - COMMON blocks should be used sparingly, if at all.
Generally, code is easier to follow when the variables needed are passed
through the call sequence rather than in COMMON, especially when some of the
variables in the COMMON are used and some are not. Having variables in
COMMON can also make it difficult to modify a program that has many
subroutines. In any case, all COMMON should be labeled. The name of the
block should be rather unique to keep to a minimum conflicts that might
arise when a routine is used by others. For instance, XXXONE might be a
good name for a program named XXX; this would be better than BLOCK1.

Type Statements - Type statements should not be used unless the type is
"unusual." The CHARACTER type is unusual in this sense and is needed for
character variables. Do not use type statements for REAL*4 or INTEGER*4
variables. (See Variable Naming below.)

Variable Naming - The FORTRAN predefined specification of integer and real
variables shall be followed--INTEGER(I-N), REAL(A-H,O-Z). By using this
convention, it is much easier to catch integer/real conversion errors than
if the reader has to remember the type of all variables in a specific
routine. With the advent of FORTRAN 77, reserving the letter "C" for
CHARACTER variables in new code is recommended. Do not use the IMPLICIT
statement. For maximum portability, limiting the variable name to six
characters is advisable, but not imperative. Variables used for only one
purpose (e.g., to hold values of dew point temperature) should be given
easily recognizable names (e.g., DEWP). (Using an array for multiple
purposes may make this difficult, if not impossible, but equivalencing
should not be used to overcome the difficulty.) Generally, the use of
single characters, such as "I" and "J," should be reserved for DO loop
indices. In two-dimensional grid indexing, the use of "IX" for left to
right and "JY" for bottom to top is a good practice, and the convention of
using the first index to refer to the "IX" direction is mandatory. When a
variable is passed to another routine, whenever practical use the same name
for the variable in both routines.

EQUIVALENCE Statements - Equivalencing variables tends to make code harder
to follow, and encourages mistakes. It may also hinder optimization in some
compilers. Only in special cases or where much memory can be saved should
equivalencing be used, or where character information must occupy an INTEGER
or REAL variable.

ATT1-6

DATA Statements - When values are specified in DATA statements, try to
arrange them so that they can be easily read. This is especially important
for multiply dimensioned arrays. Put on separate lines whenever practicable
values pertaining to different dimensions.

In-Line Documentation - In-line documentation should be provided at
appropriate points in the program. Somewhere between 10% and 50% of the total
lines should be devoted to documentation (besides the documentation block).
The comments are used to explain the code and should be subordinate to it.
Therefore, with code that has executable statements starting in Col. 7, start
all comments in Col. 10. One should expect to "read" the code with
explanation by the comments, rather than vice versa. (Indention for IF THEN
ELSE structures with accompanying comments will be treated later.) A block of
code can be explained before the block by comments separated above and below
by a blank line ("C" only on the line). A single line of code can be
explained by a single comment following (or preceding) the executable line
with no blank line. A comment should be used to explain the purpose of a
called subroutine. Comments can be either upper or lower case, but the usage
shall be consistent within a routine. Clarity is many times enhanced by
inserting a blank line after a branch-type instruction. Comments are not to
be put on the same line as an executable statement following an "!".

Length of Programs - Program (subroutine) length (number of lines of
executable code) should be governed by the function of the routine, and not by
some arbitrary rule such as "all programs will be between 10 and 100 lines of
code." A specific maximum size is not as important as convenient program
structure. Modularity is important when meaningful, and it usually is.

Top Down Coding - Program flow should be from the top down. With the IF THEN
ELSE type of structures of FORTRAN 77, this is always possible with enough
nesting. It is usually possible to do this even when the GO TO construction
is used. Some slight duplication of code may be preferable to branching. In
all cases, it is the clarity of the code that is important. It may be
confusing to have nests more than, say, 6 deep. On the other hand, if a
program essentially repeats itself when input data so indicate, a branch from
somewhere (usually near the end) back to (near) an input statement should not
be confusing, and may be more "natural" than trying to accommodate this option
with an IF THEN ELSE construction.

Statement Labels - Statement labels should always start in Col. 2, no matter
how many digits they contain. Number only those statements to which reference
is made (i.e., only those it is necessary to number). Most cross reference
lists will indicate any statement numbers that can be removed.

Some logical numbering sequence must be followed. Some possibilities are:

The numbers range from 1 through 9999 and be in sequence.

The numbers always contain 4 digits and be in sequence.

The primary numbering system start at 100 or above and end at 999, but, upon
revision, when it is necessary to insert more numbers than space has been
provided for, a fourth digit is added. Since all numbers start in Col. 2,
they "appear" to be in order even though 1115 comes between 111 and 112
(this may be slightly inconvenient in some compiler's cross reference
listings, as all 3-digit numbers may precede 4-digit numbers). Although
this method may seem at first glance to be more complicated, it is really
very simple and workable.

ATT1-7

Statement Format - For programs that are basically not in the IF THEN ELSE
structure, start all statements (except comments) in Col. 7. Continuation
statements should be indented by at least 5 spaces unless there is a reason to
do otherwise (a FORMAT statement can usually be split between lines with no
problem--even a string of characters can be stopped and restarted on another
line). Limit the line length to the FORTRAN 77 standard, 72 characters.

Statements should not include blanks unless they are necessary to improve
readability. Establish a pattern and stick with it. Examples as used in TDL
programs are:

 SUBROUTINE INTR(P,BY,BX,BB)

 DIMENSION SAVE(2,2),P(61,81)

 EQUIVALENCE (P(1,1),NPK(1)),(X,Y)

 COMMON/M400/VRBL1(10),VRBL2(10)VRBL3(100),
 1 VRBL4(1000)

 CALL RDMOSH(N,NWDS,NROWS,NCOLS,JDATE,NERR)

 WRITE(KFIL12,130)KDATE(MT),JDATE

 130 FORMAT(' THERE IS A PROBLEM WITH THE INPUT DATA NEEDED, KDATE ='I8,'. ',
 1 ' DATE FOUND IS ='I8)

 X=IB(J)+IA(K)+3*(K+IC(J)**4)+M/N

 CHARACTER*3 CWSFO,CNODE,CTIME(10)

 DATA NCRIT/2,1,1,1,1/

 PARAMETER (ND2=41,
 1 ND3=39)

 STOP 115

Note that a comment following an "!" shall not appear on the same line as an
executable statement.

Continuation Lines - Continuation lines can be denoted by the sequence of
numbers 1 through 9, then alphabetically starting with A. Occasionally, it
may be desirable to start the sequence with 2 rather than 1 in DATA
statements. As an option, the same character can be used for all continuation
lines.

Spaces Versus Tabs - When spacing over to where a statement, statement label,
or comment is to start, use the space bar, not the tab.

CONTINUE Statements - Continue statements should be used only where necessary,
except a CONTINUE is always used at the end of a DO loop. End each DO loop
with a separate CONTINUE statement even though this is not logically
necessary. This serves the purpose of notifying the "reader" that this is the
end of a DO loop, and may aid in optimization for some compilers. Each nest
of a nested DO loop will have its own CONTINUE.

ATT1-8

DO Loops - A blank comment should immediately precede a DO statement and
follow the DO loop's CONTINUE statement. For very short, multiple nests, a
separate blank for each loop is not needed.

FORMAT Statements - Format statements should be used in the code where they
are referenced, and should be numbered in sequence along with other numbered
lines. A FORMAT statement should immediately follow the first I/O statement
which refers to it. For ease of possible later modification, it may be best
to duplicate a FORMAT statement, except for its number, so that it can be with
the statement that refers to it. If multiple statements refer to the same
FORMAT, later modification may remove (or renumber) the FORMAT, even though it
is referred to elsewhere in the program, and a compile error will occur. When
looking at the printed output and the code that produced it, it is much easier
to match the output to the FORMAT statement when the FORMAT and the I/O
statement are together.

Indention - Several rules for indention of statements are given above in
connection with other topics. In general, when the GO TO structure
predominates, start executable statements in Col. 7 and comments in Col. 10.
For IF THEN ELSE structures, some indention shall be used. One option is to
indent each "nest" another 3 spaces. Comments could be indented 3 more
spaces. Whatever convention is adopted for a routine, it must be used
consistently within the routine.

I/O Device Reference - Device reference by FORTRAN number should be with an
INTEGER variable, not a constant. For main programs, this variable should be
given a value in a DATA statement. For subroutines, this variable should be
passed through the argument list, after being defined in the main program. In
some cases, it may be more convenient to read the variable name from a control
file. A convenient convention is KFIL1 for Unit No. 1, etc. A device
reference number should always be passed to a subroutine to be used for the
default output. A convenient name is KFILDO and if used consistently can be
easily identified for that purpose in all routines.

Variable Dimensions - Whenever there is a chance that the dimensions of a
variable will be changed, and always when the dimensions are referred to in
other statements (for example, to keep from overflowing the array), the
dimensions should be declared by defining a variable in a PARAMETER statement.
The actual number should never be referred to in the code, but rather referred
to by the variable name used in the PARAMETER statement. Usually, variables
and their dimensions should be carried to subroutines through the argument
list.

Subroutine Call Sequence - No matter what rules are established, exceptions
will occur. Common sense must prevail. However, to the extent practicable,
the order should be as follows:

! If data set reference numbers are provided, put them first.

! Other input to the routine should follow.

! Variables used for both input and output or work area should then follow.

Output variables, ending with an error (return) code (if any) and finally
the alternate return symbol(s) (return to a statement number--FORTRAN 77
uses an * for this purpose in the SUBROUTINE statement) should come last.
Alternate returns should be used sparingly, as following the program logic
is usually more difficult than using an error (return) code and checking it

ATT1-9

for desired branches. However, alternate returns are very useful in some
situations (e.g., repeated calls to a subroutine where the same action is to
be taken for all such returns).

Variable dimensions for an array or arrays should follow the last array name
in which they are used. Multiple dimensions passed for an array should
occur in the same sequence as they occur in the DIMENSION statement. For
extensive call sequences, the dimensions could all be put together near the
end.

Subroutine Entry Points - Each subroutine should have only one entry point.
Do not use the ENTRY statement.

End of File and Error Checks - Error checks for input should be used. Errors
can be indicated by an error code returned to the calling routine (preferably
with a print--actually a WRITE to the unit KFILDO--of the diagnostic in the
routine itself and with the value returned in the variable IER), or exit can
be made to an error handling routine. In case the error is fatal, it may be
all right to stop in the routine itself with an appropriate diagnostic (see
Program Termination below).

Error Codes - Whenever possible, the "no error" condition should be "0." Use
these as INTEGER variables, not as, for example, LOGICAL.

Non-Standard Features - Most compilers will permit use of some non-FORTRAN 77
features. Sometimes a FORTRAN 77 statement and its older counterpart (e.g.,
FORTRAN 66) may both work. When converting a program to FORTRAN 77, if the
compiler does not flag the "error," it may go unrecognized; this is
inevitable. However, we should stick to the FORTRAN 77 version as best we
know it and can. System subroutines whose likelihood of being used by another
compiler is not high should be avoided.

Indexing Variables with Multiple Dimensions - Whenever practicable, in nested
DO loops, index the first variable indexed with the innermost DO. This is
computationally more efficient for some compilers and may help to reduce
paging in large, complex systems. It may be impossible to always follow this
rule, but it shall be followed whenever it is reasonable to do so.

Program Termination - Generally, main programs should indicate in the normal
print medium a successful completion, such as "XXX COMPLETED," where XXX is
the program name. Any other stop should:

Produce in the print medium an indication of the problem and where the stop
occurred. The latter can be done by using a statement such as "STOP AT
1013" where 1013 is the statement number at or near where the stop occurred.
The termination of the program should be with the statement STOP 1013.

If the stop is in a subroutine, an error statement which includes the
subroutine name should be printed, such as "STOP IN XXX AT 1013" where XXX
is the subroutine name and 1013 is the statement number at or near where the
stop occurred. The reason for the stop with values of pertinent variables
should also be printed if such would be helpful. The termination of the
subroutine should be with the statement STOP 1013. A little time spent
arranging for this diagnostic may save much time later on.

Generally, it is better to return an error code from a subroutine rather
than to terminate when there is a problem; this should be done if the user
can exercise judgment about how to proceed. However, if the error is

ATT1-10

unrecoverable, or if in the judgment of the author of the subroutine it
would definitely be a mistake to continue, the stop can be in the
subroutine. (The best procedure to use may vary with circumstance; a STOP
in a subroutine may be prohibited in "operational" jobs.) In any case, the
user must always be protected from bad results or data.

Printed Output - Output to be printed should be arranged in an easy-to-read
format. For instance, line up columns of numbers. Also identify values
printed in well-understood terms or in terms of variables defined in the
program writeup.

3. REVISION OF EXISTING CODE

Much of the development done centrally and locally will consist of revision
of existing code gathered from various organizations. Needless to say, this
code will come in varying forms of completeness and documentation. When the
decision is made as a group effort as to which code to use, it will be
determined as to how much to make the code conform to the guidelines. For
extensive rewrites, it may be advisable to make it roughly conform. However,
for more minor changes, it will be better to follow the "style" of the
existing code (provided, it has a consistent style). Two conflicting goals
can provide some guidance: (1) Use existing code as much as possible, and
(2) make sure each module is well structured and documented, as well as being
reasonably efficient and fulfilling the required functions. Note that it is
not necessary to remove all "GO TOs" to achieve optimum metrics.

4. DOCUMENTATION

External documentation will follow the standards defined in Appendix 4 of
the AWIPS AIFM.

5. AWIPS SPECIFIC COMMENTS

At this writing, a number of issues regarding integration of code into AWIPS
are unknown. For instance, the way error logging and user notification are to
be treated are not defined.

6. REFERENCES

Meteorological Development Laboratory, 1995: Software Development Plan for
Producing WFO Hydrometeorological Applications for AWIPS. National Weather
Service, NOAA, U.S. Department of Commerce, 18 pp. plus attachments.

